Learn R Programming

fdasrvf (version 2.4.0)

multivariate_pca: Curve PCA

Description

Calculate principal directions of a set of curves

Usage

multivariate_pca(
  align_data,
  no = 3,
  var_exp = NULL,
  ci = c(-1, 0, 1),
  mode = "O",
  showplot = TRUE
)

Value

Returns a curve_pca object containing

latent

singular values

U

singular vectors

coef

principal coefficients

pd

principal directions

Arguments

align_data

fdacurve object from multivariate_karcher_mean of aligned data

no

number of components

var_exp

compute no based on value percent variance explained (example: 0.95) will override no

ci

geodesic standard deviations (default = c(-1,0,1))

mode

Open ("O") or Closed ("C") curves

showplot

show plots of principal directions (default = TRUE)

References

Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428.

Examples

Run this code
align_data <- multivariate_karcher_mean(beta[, , 1, 1:2], maxit = 2)
out <- multivariate_pca(align_data)

Run the code above in your browser using DataLab