Learn R Programming

fdasrvf (version 2.4.2)

horizFPNS: Horizontal Functional Principal Component Analysis

Description

This function calculates vertical functional principal nested sphere analysis on aligned data

Usage

horizFPNS(warp_data, var_exp = 0.99, ci = c(-1, 0, 1), showplot = TRUE)

Value

Returns a hfpns object containing

gam_pns

warping functions principal directions

psi_pns

srvf principal directions

PNS

PNS object

Arguments

warp_data

fdawarp object from time_warping of aligned data

var_exp

compute no based on value percent variance explained (example: 0.95)

ci

geodesic standard deviations (default = c(-1,0,1))

showplot

show plots of principal directions (default = T)

References

Yu, Q., Lu, X., and Marron, J. S. (2017), “Principal Nested Spheres for Time-Warped Functional Data Analysis,” Journal of Computational and Graphical Statistics, 26, 144–151.

Examples

Run this code
hfpns <- horizFPNS(simu_warp)

Run the code above in your browser using DataLab