Last chance! 50% off unlimited learning
Sale ends in
censored.fit
fits a null distribution
to censored data.
fndr.cutoff
finds a suitable cutoff point based on the
(approximate) false non-discovery rate (FNDR).
censored.fit(x, cutoff, statistic=c("normal", "correlation", "pvalue", "studentt"))
fndr.cutoff(x, statistic=c("normal", "correlation", "pvalue", "studentt"))
censored.fit
returns a matrix whose rows contain the estimated parameters and corresponding errors
for each cutoff point.
fndr.cutoff
returns a tentative cutoff point.
vector of test statistics.
truncation point (this may a single value or a vector).
type of statistic - normal, correlation, or student t.
As null model truncated normal, truncated student t or a truncated correlation density is assumed. The truncation point is specified by the cutoff parameter. All data points whose absolute value are large than the cutoff point are ignored when fitting the truncated null model via maximum likelihood. The total number of data points is only used to estimate the fraction of null values eta0.
fdrtool
.
# load "fdrtool" library
library("fdrtool")
# simulate normal data
sd.true = 2.232
n = 5000
z = rnorm(n, sd=sd.true)
censored.fit(z, c(2,3,5), statistic="normal")
# simulate contaminated mixture of correlation distribution
r = rcor0(700, kappa=10)
u1 = runif(200, min=-1, max=-0.7)
u2 = runif(200, min=0.7, max=1)
rc = c(r, u1, u2)
censored.fit(r, 0.7, statistic="correlation")
censored.fit(rc, 0.7, statistic="correlation")
# pvalue example
data(pvalues)
co = fndr.cutoff(pvalues, statistic="pvalue")
co
censored.fit(pvalues, cutoff=co, statistic="pvalue")
Run the code above in your browser using DataLab