library (fdth)
#======================
# Vectors: univariated
#======================
set.seed(1)
x <- rnorm(n=1e3,
mean=5,
sd=1)
(d <- fdt(x))
# Histograms
plot(d) # Absolut frequency histogram
plot(d,
main='My title')
plot(d,
x.round=3,
col='darkgreen')
plot(d,
x.las=2)
plot(d,
x.round=3,
x.las=2,
xlab=NULL)
plot(d,
v=TRUE,
cex=.8,
x.round=3,
x.las=2,
xlab=NULL,
col=rainbow(11))
plot(d,
type='fh') # Absolut frequency histogram
plot(d,
type='rfh') # Relative frequency histogram
plot(d,
type='rfph') # Relative frequency (%) histogram
plot(d,
type='cdh') # Cumulative density histogram
plot(d,
type='cfh') # Cumulative frequency histogram
plot(d,
type='cfph') # Cumulative frequency (%) histogram
# Poligons
plot(d,
type='fp') # Absolut frequency poligon
plot(d,
type='rfp') # Relative frequency poligon
plot(d,
type='rfpp') # Relative frequency (%) poligon
plot(d,
type='cdp') # Cumulative density poligon
plot(d,
type='cfp') # Cumulative frequency poligon
plot(d,
type='cfpp') # Cumulative frequency (%) poligon
# Density
plot(d,
type='d') # Density
# Summary
d
summary(d) # the same
print(d) # the same
show(d) # the same
summary(d,
format=TRUE) # It can not be what you want to publications!
summary(d,
format=TRUE,
pattern='%.2f') # Huumm ..., good, but ... Can it be better?
summary(d,
col=c(1:2, 4, 6),
format=TRUE,
pattern='%.2f') # Yes, it can!
range(x) # To know x
summary(fdt(x,
start=1,
end=9,
h=1),
col=c(1:2, 4, 6),
format=TRUE,
pattern='%d') # Is it nice now?
# The fdt.object
d[['table']] # Stores the feq. dist. table (fdt)
d[['breaks']] # Stores the breaks of fdt
d[['breaks']]['start'] # Stores the left value of the first class
d[['breaks']]['end'] # Stores the right value of the last class
d[['breaks']]['h'] # Stores the class interval
as.logical(d[['breaks']]['right']) # Stores the right option
# Theoretical curve and fdt
x <- rnorm(1e5,
mean=5,
sd=1)
plot(fdt(x,
k=100),
type='d',
col=heat.colors(100))
curve(dnorm(x,
mean=5,
sd=1),
col='darkgreen',
add=TRUE,
lwd=2)
#=============================================
# Data.frames: multivariated with categorical
#=============================================
mdf <- data.frame(X1=rep(LETTERS[1:4], 25),
X2=as.factor(rep(1:10, 10)),
Y1=c(NA, NA, rnorm(96, 10, 1), NA, NA),
Y2=rnorm(100, 60, 4),
Y3=rnorm(100, 50, 4),
Y4=rnorm(100, 40, 4))
(d <- fdt(mdf))
# Histograms
plot(d,
v=TRUE)
plot(d,
col='darkgreen')
plot(d,
col=rainbow(8))
plot(d,
type='fh')
plot(d,
type='rfh')
plot(d,
type='rfph')
plot(d,
type='cdh')
plot(d,
type='cfh')
plot(d,
type='cfph')
# Poligons
plot(d,
v=TRUE,
type='fp')
plot(d,
type='rfp')
plot(d,
type='rfpp')
plot(d,
type='cdp')
plot(d,
type='cfp')
plot(d,
type='cfpp')
# Density
plot(d,
type='d')
# Summary
d
summary(d) # the same
print(d) # the same
show(d) # the same
summary(d,
format=TRUE)
summary(d,
format=TRUE,
pattern='%05.2f') # regular expression
summary(d,
col=c(1:2, 4, 6),
format=TRUE,
pattern='%05.2f')
print(d,
col=c(1:2, 4, 6))
print(d,
col=c(1:2, 4, 6),
format=TRUE,
pattern='%05.2f')
# Using by
levels(mdf$X1)
summary(fdt(mdf,
k=5,
by='X1'))
plot(fdt(mdf,
k=5,
by='X1'),
col=rainbow(5))
levels(mdf$X2)
summary(fdt(mdf,
breaks='FD',
by='X2'),
round=3)
plot(fdt(mdf,
breaks='FD',
by='X2'))
summary(fdt(iris,
k=5),
format=TRUE,
patter='%04.2f')
plot(fdt(iris,
k=5),
col=rainbow(5))
levels(iris$Species)
summary(fdt(iris,
k=5,
by='Species'),
format=TRUE,
patter='%04.2f')
plot(fdt(iris,
k=5,
by='Species'),
v=TRUE)
#=========================
# Matrices: multivariated
#=========================
summary(fdt(state.x77),
col=c(1:2, 4, 6),
format=TRUE)
plot(fdt(state.x77))
# Very big
summary(fdt(volcano,
right=TRUE),
col=c(1:2, 4, 6),
round=3,
format=TRUE,
pattern='%05.1f')
plot(fdt(volcano,
right=TRUE))Run the code above in your browser using DataLab