## S3 method for class 'fs':
plot(x, xlab, ylab, zlab, xlim, ylim, zlim,
addData=FALSE, scaleData=FALSE, addDataNum=1000,
addKDE=TRUE, jitterRug=TRUE,
addSignifGradRegion=FALSE, addSignifGradData=FALSE,
addSignifCurvRegion=FALSE, addSignifCurvData=FALSE,
addAxes3d=TRUE, densCol, dataCol="black", gradCol="green4",
curvCol="blue", axisCol="black", bgCol="white",
dataAlpha=0.1, gradDataAlpha=0.3, gradRegionAlpha=0.2,
curvDataAlpha=0.3, curvRegionAlpha=0.3)fs (output from
featureSignif function)fs objects created from
featureSignif. This plotting function is called
automatically from inside
featureSignif except when plotFS=FALSE.
If the user creates an fs object with the
significant gradient and curvature, then it is easier and more
efficient to modify the graphical display just using plot.fs. See
examples below.Duong, T., Cowling, A., Koch, I., Wand, M.P. (2007) Feature significance for multivariate kernel density estimation. Submitted. Godtliebsen, F., Marron, J.S. and Chaudhuri, P. (2002) Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics, 11, 1-22.
featureSigniflibrary(MASS)
data(geyser)
fs <- featureSignif(geyser, addSignifGradRegion=TRUE,
addSignifCurvRegion=TRUE, bw=c(4.5, 0.37), plotFS=FALSE)
plot(fs, addKDE=FALSE, addData=TRUE) ## data only
plot(fs, addKDE=TRUE) ## KDE plot only
plot(fs, addSignifGradRegion=TRUE)
plot(fs, addKDE=FALSE, addSignifCurvRegion=TRUE)
plot(fs, addSignifCurvData=TRUE, curvCol="cyan")Run the code above in your browser using DataLab