## S3 method for class 'fs':
plot(x, xlab, ylab, zlab, xlim, ylim, zlim,
addData=FALSE, scaleData=FALSE, addDataNum=1000,
addKDE=TRUE, jitterRug=TRUE,
addSignifGradRegion=FALSE, addSignifGradData=FALSE,
addSignifCurvRegion=FALSE, addSignifCurvData=FALSE,
addAxes3d=TRUE, densCol, dataCol="black", gradCol="green4",
curvCol="blue", axisCol="black", bgCol="white",
dataAlpha=0.1, gradDataAlpha=0.3, gradRegionAlpha=0.2,
curvDataAlpha=0.3, curvRegionAlpha=0.3, gridsize)fs (output from
featureSignif function)featureSignif. Its other primary use is with fs objects created from
featureSignif. If the user creates an fs object with the
significant gradient and curvature, then it is easier and more
efficient to modify the graphical display using plot.fs than to
recompute the everything with a call to featureSignif. See
examples below.
Duong, T., Cowling, A., Koch, I., Wand, M.P. (2006) Feature significance for multivariate kernel density estimation. Submitted. Godtliebsen, F., Marron, J.S. and Chaudhuri, P. (2002) Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics, 11, 1-22.
featureSigniflibrary(MASS)
data(geyser)
fs <- featureSignif(geyser, addSignifGradRegion=TRUE,
addSignifCurvRegion=TRUE, bw=c(4.5, 0.37))
plot(fs, addKDE=FALSE, addData=TRUE) ## data only
plot(fs, addKDE=TRUE) ## KDE plot only
plot(fs, addSignifGradRegion=TRUE)
plot(fs, addKDE=FALSE, addSignifCurvRegion=TRUE)
plot(fs, addSignifCurvData=TRUE, curvCol="cyan")Run the code above in your browser using DataLab