Learn R Programming

feature (version 1.2.2)

plot.fs: Feature signficance plot for 1- to 3-dimensional data

Description

Feature signficance plot for 1- to 3-dimensional data.

Usage

## S3 method for class 'fs':
plot(x, ..., xlab, ylab, zlab, xlim, ylim, zlim,
   add=FALSE, addData=FALSE, scaleData=FALSE, addDataNum=1000,
   addKDE=TRUE, jitterRug=TRUE,  
   addSignifGradRegion=FALSE, addSignifGradData=FALSE,
   addSignifCurvRegion=FALSE, addSignifCurvData=FALSE,
   addAxes3d=TRUE, densCol, dataCol="black", gradCol="green4",
   curvCol="blue", axisCol="black", bgCol="white",
   dataAlpha=0.1, gradDataAlpha=0.3, gradRegionAlpha=0.2,
   curvDataAlpha=0.3, curvRegionAlpha=0.3)

Arguments

x
an object of class fs (output from featureSignif function)
xlim, ylim, zlim
x-, y-, z-axis limits
xlab, ylab, zlab
x-, y-, z-axis labels
scaleData
flag for scaling the data i.e. transforming to unit variance for each dimension
add
flag for adding to an existing plot
addData
flag for display of the data
addDataNum
maximum number of data points plotted in displays
addKDE
flag for display of kernel density estimates
jitterRug
flag for jittering of rug-plot for univariate data display
addSignifGradRegion
flag for display of significant gradient regions
addSignifGradData
flag for display of significant gradient data points
addSignifCurvRegion
flag for display of significant curvature regions
addSignifCurvData
flag for display of significant curvature data points
addAxes3d
flag for displaying axes in 3-d displays
densCol
colour of density estimate curve
dataCol
colour of data points
gradCol
colour of significant gradient regions points
curvCol
colour of significant curvature regions points
axisCol
colour of axes
bgCol
colour of background
dataAlpha
transparency of data points
gradDataAlpha
transparency of significant gradient data points
gradRegionAlpha
transparency of significant gradient regions
curvDataAlpha
transparency of significant curvature data points
curvRegionAlpha
transparency of significant curvature regions
...
other graphics parameters

Value

  • Plot of 1-d and 2-d kernel density estimates are sent to graphics window. Plot for 3-d is sent to RGL window.

See Also

featureSignif

Examples

Run this code
library(MASS)
data(geyser)
fs <- featureSignif(geyser, bw=c(4.5, 0.37))
plot(fs, addKDE=FALSE, addData=TRUE)  ## data only
plot(fs, addKDE=TRUE)                 ## KDE plot only
plot(fs, addSignifGradRegion=TRUE)    
plot(fs, addKDE=FALSE, addSignifCurvRegion=TRUE)
plot(fs, addSignifCurvData=TRUE, curvCol="cyan")

Run the code above in your browser using DataLab