require(featurefinder)
data(mycsv)
data$SMIfactor=paste("smi",as.matrix(data$SMIfactor),sep="")
nn=floor(length(data$DAX)/2)
# Can we predict the relative movement of DAX and SMI?
data$y=data$DAX*0
data$y[1:(nn-1)]=((data$DAX[2:nn])-(data$DAX[1:(nn-1)]))/
(data$DAX[1:(nn-1)])-(data$SMI[2:nn]-(data$SMI[1:(nn-1)]))/(data$SMI[1:(nn-1)])
thismodel=lm(formula=y ~ .,data=data)
expected=predict(thismodel,data)
actual=data$y
residual=actual-expected
data=cbind(data,expected, actual, residual)
OutputPath=tempdir()
fcsv <- file.path(OutputPath, "mycsv.csv")
write.csv(data[(nn+1):(length(data$y)),], file = fcsv, row.names=FALSE)
ExclusionVars="\"residual\",\"expected\", \"actual\",\"y\""
FactorToNumericList=c()
findFeatures(OutputPath, fcsv, ExclusionVars,FactorToNumericList,
treeGenerationMinBucket=50,
treeSummaryMinBucket=20)
Run the code above in your browser using DataLab