Computes return level estimates and confidence intervals at the specified return periods (defaults to 2, 5, 10, 20, 50, and 100 years) using the parametric bootstrap. This function supports many probability models and parameter estimation methods.
For NS-FFA: To perform uncertainty quantification for a nonstationary model,
include the observation years (ns_years
), the nonstationary model structure
(ns_structure
), and a list of years at which to compute the return level estimates
and confidence intervals (ns_slices
).
uncertainty_bootstrap(
data,
distribution,
method,
prior = NULL,
ns_years = NULL,
ns_structure = NULL,
ns_slices = NULL,
alpha = 0.05,
samples = 10000L,
periods = c(2, 5, 10, 20, 50, 100)
)
A list containing the following six items:
method
: "Bootstrap"
distribution
: The distribution
argument.
params
: The fitted parameters.
ns_structure
: The ns_structure
argument, if given.
ns_slices
: The ns_slices
argument, if given.
ci
: A dataframe containing confidence intervals (S-FFA only)
ci_list
: A list of dataframes containing confidence intervals (NS-FFA only).
The dataframe(s) in ci
and ci_list
have four columns:
estimates
: Estimated quantiles for each return period.
lower
: Lower bound of the confidence interval for each return period.
upper
: Upper bound of the confidence interval for each return period.
periods
: The periods
argument.
Numeric vector of observed annual maximum series values. Must be strictly positive, finite, and not missing.
A three-character code indicating the distribution family.
Must be "GUM"
, "NOR"
, "LNO"
, "GEV"
, "GLO"
, "GNO"
, "PE3"
, "LP3"
,
or "WEI"
.
Character scalar specifying the estimation method.
Must be "L-moments"
, "MLE"
, or "GMLE"
.
Numeric vector of length 2. Specifies the parameters of the Beta prior for the shape parameter \(\kappa\).
For NS-FFA only: Numeric vector of observation years corresponding
to data
. Must be the same length as data
and strictly increasing.
For NS-FFA only: Named list indicating which distribution parameters are modeled as nonstationary. Must contain two logical scalars:
location
: If TRUE
, the location parameter has a linear temporal trend.
scale
: If TRUE
, the scale parameter has a linear temporal trend.
For NS-FFA only: Numeric vector specifying the years at which to
evaluate the return levels confidence intervals of a nonstationary probability
distribution. ns_slices
do not have to be elements of the ns_years
argument.
Numeric scalar in \([0.01, 0.1]\). The significance level for confidence intervals or hypothesis tests. Default is 0.05.
Integer scalar. The number of bootstrap samples. Default is 10000.
Numeric vector used to set the return periods for FFA. All entries must be greater than or equal to 1.
Bootstrap samples are obtained from the fitted distribution via inverse transform
sampling. For each bootstrapped sample, the parameters are re-estimated based on the
method
argument. Then, the bootstrapped parameters are used to compute a new set of
bootstrapped quantiles. Confidence intervals are obtained from the empirical
nonexceedance probabilities of the bootstrapped quantiles.
Vidrio-Sahagún, C.T., He, J. Enhanced profile likelihood method for the nonstationary hydrological frequency analysis, Advances in Water Resources 161, 10451 (2022). tools:::Rd_expr_doi("10.1016/j.advwatres.2022.104151")
fit_lmoments()
, fit_mle()
, fit_gmle()
, utils_sample_lmoments()
utils_quantiles()
, plot_sffa_estimates()
, plot_nsffa_estimates()
data <- rnorm(n = 100, mean = 100, sd = 10)
uncertainty_bootstrap(data, "WEI", "L-moments")
Run the code above in your browser using DataLab