Computes the generalized log-likelihood for stationary and nonstationary variants of the Generalized Extreme Value (GEV) distribution with a geophysical (Beta) prior distribution for the shape parameter (Martins and Stedinger, 2000).
For NS-FFA: To compute the generalized log-likelihood for a nonstationary
probability model, include the observation years (ns_years
) and the nonstationary
model structure (ns_structure
).
utils_generalized_likelihood(
data,
params,
prior,
ns_years = NULL,
ns_structure = NULL
)
Numeric scalar. The generalized log-likelihood value.
Numeric vector of observed annual maximum series values. Must be strictly positive, finite, and not missing.
Numeric vector of distribution parameters, in the order (location,
scale, shape). The length must be between 2 and 5, depending on the specified
distribution
and structure
.
Numeric vector of length 2. Specifies the parameters of the Beta prior for the shape parameter \(\kappa\).
For NS-FFA only: Numeric vector of observation years corresponding
to data
. Must be the same length as data
and strictly increasing.
For NS-FFA only: Named list indicating which distribution parameters are modeled as nonstationary. Must contain two logical scalars:
location
: If TRUE
, the location parameter has a linear temporal trend.
scale
: If TRUE
, the scale parameter has a linear temporal trend.
The generalized log-likelihood is defined as sum of (1) the log-likelihood and (2) the log-density of the Beta prior with parameters \((p, q)\). The contribution of the prior is: $$\log \pi(\kappa) = (p-1) \log(0.5-\kappa) + (q-1) \log(0.5+\kappa) - \log (\beta(p, q))$$
El Adlouni, S., Ouarda, T.B.M.J., Zhang, X., Roy, R., Bobee, B., 2007. Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research 43 (3), 1–13. tools:::Rd_expr_doi("10.1029/2005WR004545")
Martins, E. S., and Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737–744. tools:::Rd_expr_doi("10.1029/1999WR900330")
utils_log_likelihood()
data <- rnorm(n = 100, mean = 100, sd = 10)
params <- c(100, 10, 0.1)
prior <- c(1, 1)
# Compute the generalized log-likelihood
utils_generalized_likelihood(data, params, prior)
Run the code above in your browser using DataLab