Given a vector x
and a value eta
for step-size
in the stochastic gradient descent for the adaptive forgetting
factor, this returns the value of the fixed forgetting factor mean
\(\bar{x}_{N, \overrightarrow{\lambda} }\), where \(N\) is the
length of x
. Algorithm is implemented in 'C++'.
computeAFFMean(x = c(0), eta = 0.01)
The adaptive forgetting factor mean (scalar).
Vector of numeric values values. Default is c(0)
,
a vector of one element (zero)
Value for the step size in the gradient descent step.
Default is eta=0.01
.
Dean Bodenham
D. A. Bodenham and N. M. Adams (2016) Continuous monitoring for changepoints in data streams using adaptive estimation. Statistics and Computing doi:10.1007/s11222-016-9684-8
computeFFFMean