Learn R Programming

fields (version 1.5)

nkreg: Normal kernel regression estimate

Description

Estimates a univariate or multivariate regression surface using a normal kernel function and a fixed bandwidth.

Usage

nkreg(data.x, data.y, bandwidth, n.points=50, grid=NULL, grid.list=NULL)

Arguments

data.x
a matrix of data locations
data.y
a vector of values for smoothing
bandwidth
bandwidth for kernel if a vector then an estimate will be be found for each bandwidth.
n.points
Number of equally spaced points to evaluate a univariate estimate estimate or a 2-d estimate on a regular grid.
grid
matrix of locations to evaluate the kernel estimate
grid.list
A grid.list that describes the regular grid to evaluate the estimate. If it is missing the default for 2-d is to create a grid

Value

  • xPoints for evaluation
  • yestimate of curve or surface. If more than one bandwidth is supplied then y is matrix with columns indexed by the bandwidth values
  • hbandwidths used.
  • grid.listgrid.list that was either passed or created.

See Also

Tps, Krig, sreg, smooth.2d, image.smooth

Examples

Run this code
out<- nkreg( rat.diet$t, rat.diet$con, bandwidth=3, n.points=100)
plot( rat.diet$t, rat.diet$con)
lines( out$x, out$y)

# 2-d example evaluate at 40 points
out<- nkreg( precip$x, precip$y, bandwidth=.5, n.points=64)
image.plot( as.surface(out$x, out$y))

Run the code above in your browser using DataLab