#2-d example
fit<- Tps(ozone$x, ozone$y) # fits a surface to ozone measurements.
set.panel(2,2)
plot(fit) # four diagnostic plots of fit and residuals.
set.panel()
summary(fit)
# predict onto a grid that matches the ranges of the data.
out.p<-predict.surface( fit)
image( out.p)
surface(out.p) # perspective and contour plots of GCV spline fit
# predict at different effective
# number of parameters
out.p<-predict.surface( fit,df=10)
#1-d example
out<-Tps( rat.diet$t, rat.diet$trt) # lambda found by GCV
plot( out$x, out$y)
lines( out$x, out$fitted.values)
#
# compare to the ( much faster) one spline algorithm
# sreg(rat.diet$t, rat.diet$trt)
#
# Adding a covariate to the fixed part of model
# Note: this is a fairly big problem numerically (850+ locations)
Tps( RMprecip$x,RMprecip$y, Z=RMprecip$elev)-> out
surface( out, drop.Z=TRUE)
US( add=TRUE, col="grey")
#
# simulation reusing Tps/Krig object
#
fit<- Tps( rat.diet$t, rat.diet$trt)
true<- fit$fitted.values
N<- length( fit$y)
temp<- matrix( NA, ncol=50, nrow=N)
sigma<- fit$shat.GCV
for ( k in 1:50){
ysim<- true + sigma* rnorm(N)
temp[,k]<- predict(fit, y= ysim)
}
matplot( fit$x, temp, type="l")
#
#4-d example
fit<- Tps(BD[,1:4],BD$lnya,scale.type="range")
# plots fitted surface and contours
# default is to hold 3rd and 4th fixed at median values
surface(fit)
Run the code above in your browser using DataLab