Learn R Programming

filibustr

The filibustr package provides data utilities for research on the U.S. Congress. This package provides a uniform interface for accessing data from sources such as Voteview, the Legislative Effectiveness Scores, and more. Accessing your data using these functions removes many of the manual steps involved with importing data. This has two primary benefits:

  • Speeding up your workflow and enabling you to quickly experiment with a variety of data choices.
  • Ensuring you always have the most up-to-date data.

filibustr is inspired by the baseballr package, which provides similar conveniences for baseball analytics data.

Installation

You can install the stable version of filibustr from CRAN with:

install.packages("filibustr")

You can install the development version of filibustr from GitHub with:

# install.packages("devtools")
devtools::install_github("feinleib/filibustr")

Functions

Voteview

There are four functions that retrieve data from Voteview:

  • get_voteview_members(): data on members (Presidents, Senators, and Representatives).
  • get_voteview_parties(): data on parties (size and ideology)
  • get_voteview_rollcall_votes(): results of recorded votes (overall results, not positions of individual members)
  • get_voteview_member_votes(): individual members’ votes on recorded votes

These functions share a common interface and arguments.

For demonstration, here is the table returned by get_voteview_parties().

library(filibustr)

get_voteview_parties()
#> # A tibble: 845 × 9
#>    congress chamber   party_code party_name       n_members nominate_dim1_median
#>       <int> <fct>          <int> <fct>                <int>                <dbl>
#>  1        1 President       5000 Pro-Administrat…         1               NA    
#>  2        1 House           4000 Anti-Administra…        29                0.018
#>  3        1 House           5000 Pro-Administrat…        31                0.576
#>  4        1 Senate          4000 Anti-Administra…         9               -0.238
#>  5        1 Senate          5000 Pro-Administrat…        20                0.427
#>  6        2 President       5000 Pro-Administrat…         1               NA    
#>  7        2 House           4000 Anti-Administra…        32               -0.022
#>  8        2 House           5000 Pro-Administrat…        40                0.533
#>  9        2 Senate          4000 Anti-Administra…        14               -0.392
#> 10        2 Senate          5000 Pro-Administrat…        17                0.446
#> # ℹ 835 more rows
#> # ℹ 3 more variables: nominate_dim2_median <dbl>, nominate_dim1_mean <dbl>,
#> #   nominate_dim2_mean <dbl>

Note: Especially when working with large datasets, reading data from Voteview can take a long time. Here are two strategies to speed up your data import:

  • If you are repeatedly loading the same static dataset (i.e., not including information from the current Congress), it may be useful to download the dataset as a CSV/DTA file so you can read that local file using local_path instead of having to download data from online.
  • You may use mirai to download Voteview data in parallel. See vignette("parallel-downloads", package = "filibustr") for more info on parallel data downloads.

Legislative Effectiveness Scores

The function get_les() retrieves Legislative Effectiveness Scores data from the Center for Effective Lawmaking.

Here is an example table returned by get_les().

get_les(chamber = "senate")
#> # A tibble: 2,635 × 88
#>    last     first state congress cgnum icpsr  year dem   majority elected female
#>    <chr>    <chr> <fct>    <int> <int> <int> <int> <lgl> <lgl>      <int> <lgl> 
#>  1 Abourezk James SD          93     1 13000  1972 TRUE  TRUE        1972 FALSE 
#>  2 Allen    James AL          93     3 12100  1972 TRUE  TRUE        1968 FALSE 
#>  3 Bayh     Birch IN          93     6 10800  1972 TRUE  TRUE        1962 FALSE 
#>  4 Bentsen  Lloyd TX          93    10   660  1972 TRUE  TRUE        1970 FALSE 
#>  5 Bible    Alan  NV          93    11   688  1972 TRUE  TRUE        1954 FALSE 
#>  6 Biden    Jose… DE          93    12 14101  1972 TRUE  TRUE        1972 FALSE 
#>  7 Burdick  Quen… ND          93    16  1252  1972 TRUE  TRUE        1960 FALSE 
#>  8 Byrd     Robe… WV          93    18  1366  1972 TRUE  TRUE        1958 FALSE 
#>  9 Cannon   Howa… NV          93    19  1482  1972 TRUE  TRUE        1958 FALSE 
#> 10 Chiles   Lawt… FL          93    21 13101  1972 TRUE  TRUE        1970 FALSE 
#> # ℹ 2,625 more rows
#> # ℹ 77 more variables: afam <lgl>, latino <lgl>, votepct <dbl>, chair <lgl>,
#> #   subchr <lgl>, seniority <int>, state_leg <lgl>, state_leg_prof <dbl>,
#> #   maj_leader <lgl>, min_leader <lgl>, votepct_sq <dbl>, power <lgl>,
#> #   freshman <lgl>, sensq <int>, deleg_size <int>, party_code <int>,
#> #   bioname <chr>, bioguide_id <chr>, born <int>, died <int>, dwnom1 <dbl>,
#> #   dwnom2 <dbl>, meddist <dbl>, majdist <dbl>, cbill1 <int>, caic1 <int>, …

There are non-trivial differences between the House and Senate datasets, so take care when joining House and Senate data.

Harbridge-Yong, Volden, and Wiseman (2023)

The function get_hvw_data() retrives replication data for Harbridge-Yong, Volden, and Wiseman (2023).

Here are the tables returned by get_hvw_data():

get_hvw_data("house")
#> # A tibble: 9,825 × 109
#>    thomas_num thomas_name     icpsr congress  year st_name    cd dem   elected
#>         <int> <chr>           <int>    <int> <int> <fct>   <int> <lgl>   <int>
#>  1          1 Abdnor, James   14000       93  1973 SD          2 FALSE    1972
#>  2          2 Abzug, Bella    13001       93  1973 NY         20 TRUE     1970
#>  3          3 Adams, Brock    10700       93  1973 WA          7 TRUE     1964
#>  4          4 Addabbo, Joseph 10500       93  1973 NY          7 TRUE     1960
#>  5          5 Albert, Carl       NA       93  1973 OK          3 NA       1946
#>  6          6 Alexander, Bill 12000       93  1973 AR          1 TRUE     1968
#>  7          7 Anderson, John  10501       93  1973 IL         16 FALSE    1960
#>  8          8 Anderson, Glenn 12001       93  1973 CA         35 TRUE     1968
#>  9          9 Andrews, Ike    14001       93  1973 NC          4 TRUE     1972
#> 10         10 Andrews, Mark   10569       93  1973 ND          1 FALSE    1963
#> # ℹ 9,815 more rows
#> # ℹ 100 more variables: female <lgl>, votepct <dbl>, dwnom1 <dbl>,
#> #   deleg_size <int>, speaker <lgl>, subchr <lgl>, ss_bills <int>,
#> #   ss_aic <int>, ss_abc <int>, ss_pass <int>, ss_law <int>, s_bills <int>,
#> #   s_aic <int>, s_abc <int>, s_pass <int>, s_law <int>, c_bills <int>,
#> #   c_aic <int>, c_abc <int>, c_pass <int>, c_law <int>, afam <lgl>,
#> #   latino <lgl>, power <lgl>, budget <lgl>, chair <lgl>, state_leg <lgl>, …
get_hvw_data("senate")
#> # A tibble: 2,228 × 104
#>    last  first state  cabc  caic cbill  claw cpass  sabc  saic sbill  slaw spass
#>    <chr> <chr> <fct> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1 Grav… Mike  AK        0     0    17     0     0     2     0    48     0     1
#>  2 Stev… Ted   AK        0     0     9     0     0     6     0    71     3     6
#>  3 Allen James AL        0     0     5     0     0     2     0    14     0     1
#>  4 Spar… John  AL        1     0    23     0     1     7     0    62     0     7
#>  5 Fulb… James AR        0     0     0     0     0     9     0    31     3     8
#>  6 McCl… John  AR        0     0     3     0     0     3     0    20     1     2
#>  7 Fann… Paul  AZ        0     0     4     0     0     1     0    32     1     1
#>  8 Gold… Barry AZ        0     0     6     0     0     0     0    13     0     0
#>  9 Cran… Alan  CA        7     0    17     1     7     5     0    64     2     4
#> 10 Tunn… John  CA        0     0     1     0     0     4     0    35     0     1
#> # ℹ 2,218 more rows
#> # ℹ 91 more variables: ssabc <int>, ssaic <int>, ssbill <int>, sslaw <int>,
#> #   sspass <int>, congress <int>, cgnum <int>, icpsr <int>, year <int>,
#> #   dem <lgl>, majority <lgl>, elected <int>, female <lgl>, afam <lgl>,
#> #   latino <lgl>, votepct <dbl>, dwnom1 <dbl>, chair <lgl>, subchr <lgl>,
#> #   seniority <int>, state_leg <lgl>, state_leg_prof <dbl>, maj_leader <lgl>,
#> #   min_leader <lgl>, allbill <int>, allaic <int>, allabc <int>, …

The House and Senate data do not have the same number of variables, or the same variable names, so it is not trivial to join the two tables.

Senate.gov

The following functions retrieve data tables from Senate.gov.

  • get_senate_sessions(): The start and end dates of each legislative session of the Senate. (table link)
  • get_senate_cloture_votes(): Senate actions on cloture motions and cloture votes. (table link)

These functions take no arguments, and they always return the full data table from the Senate website.

Small utilities

This package also provides some smaller utility functions for working with congressional data.

  • 3 functions dealing with years and Congress numbers:
    • year_of_congress() returns the starting year for a given Congress.
    • congress_in_year() returns the Congress number for a given year.
    • current_congress() returns the number of the current Congress, which is currently 119. current_congress() is equivalent to congress_in_year(Sys.Date()).
  • get_voteview_cast_codes() returns a key to the cast_code column in get_voteview_member_votes().
  • read_html_table() is a general-use function for reading HTML tables from online. It’s a nice shortcut for a common rvest workflow that otherwise takes 3 functions. (It’s what powers the Senate.gov functions!)

Feedback and contributions

If you notice any bugs, or have suggestions for new features, please submit an issue on the Issues page of this package’s GitHub repository!

Data sources

This package uses data from the following websites and research:

  • Harbridge-Yong, L., Volden, C., & Wiseman, A. E. (2023). The Bipartisan Path to Effective Lawmaking. The Journal of Politics, 85(3), 1048–1063. https://doi.org/10.1086/723805
  • Lewis, Jeffrey B., Keith Poole, Howard Rosenthal, Adam Boche, Aaron Rudkin, and Luke Sonnet (2025). Voteview: Congressional Roll-Call Votes Database. https://voteview.com/
  • U.S. Senate. https://www.senate.gov/
  • Volden, C., & Wiseman, A. E. (2025). Legislative Effectiveness Scores [dataset]. Center for Effective Lawmaking. https://thelawmakers.org/

Copy Link

Version

Install

install.packages('filibustr')

Monthly Downloads

603

Version

0.5.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Max Feinleib

Last Published

October 26th, 2025

Functions in filibustr (0.5.0)

get_hvw_data

Get replication data from Harbridge-Yong, Volden, and Wiseman (2023)
congress_in_year

Calculate the Congress number of a given year
get_voteview_cast_codes

Key to Voteview cast codes in individual member votes
get_senate_sessions

Start and end dates of Senate sessions
current_congress

Calculate the current Congress number
get_senate_cloture_votes

Senate cloture motions and votes
get_les

Get Legislative Effectiveness Scores data
filibustr-package

filibustr: Data Utilities for Congressional Research
get_voteview_member_votes

Get data on the votes of individual members of Congress
get_voteview_members

Get data on members of Congress from Voteview
get_voteview_rollcall_votes

Get data on congressional roll call votes from Voteview
get_voteview_parties

Get data on congressional parties from Voteview
read_html_table

Scrape an online HTML table
year_of_congress

Get the starting year of a Congress