library(dplyr)
# Random forests for classification task
cells_subset <- modeldata::cells |>
# Use a small example for efficiency
dplyr::select(
class,
angle_ch_1,
area_ch_1,
avg_inten_ch_1,
avg_inten_ch_2,
avg_inten_ch_3
) |>
slice(1:50)
# Random forest
set.seed(42)
cells_imp_rf_res <- score_imp_rf |>
fit(class ~ ., data = cells_subset)
cells_imp_rf_res@results
# Conditional random forest
cells_imp_rf_conditional_res <- score_imp_rf_conditional |>
fit(class ~ ., data = cells_subset, trees = 10)
cells_imp_rf_conditional_res@results
# Oblique random forest
cells_imp_rf_oblique_res <- score_imp_rf_oblique |>
fit(class ~ ., data = cells_subset)
cells_imp_rf_oblique_res@results
# ----------------------------------------------------------------------------
# Random forests for regression task
ames_subset <- modeldata::ames |>
# Use a small example for efficiency
dplyr::select(
Sale_Price,
MS_SubClass,
MS_Zoning,
Lot_Frontage,
Lot_Area,
Street
) |>
slice(1:50)
ames_subset <- ames_subset |>
dplyr::mutate(Sale_Price = log10(Sale_Price))
set.seed(42)
ames_imp_rf_regression_task_res <-
score_imp_rf |>
fit(Sale_Price ~ ., data = ames_subset)
ames_imp_rf_regression_task_res@results
Run the code above in your browser using DataLab