# NOT RUN {
library(finalfit)
library(dplyr)
library(survival)
# glm
fit = glm(mort_5yr ~ age.factor + sex.factor + obstruct.factor + perfor.factor,
data=colon_s, family="binomial")
fit %>%
fit2df(estimate_suffix=" (multivariable)")
# glmlist
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "mort_5yr"
colon_s %>%
glmmulti(dependent, explanatory) %>%
fit2df(estimate_suffix=" (univariable)")
# glmerMod
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
random_effect = "hospital"
dependent = "mort_5yr"
colon_s %>%
glmmixed(dependent, explanatory, random_effect) %>%
fit2df(estimate_suffix=" (multilevel")
# glmboot
## Note number of draws set to 100 just for speed in this example
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "mort_5yr"
colon_s %>%
glmmulti_boot(dependent, explanatory, R = 100) %>%
fit2df(estimate_suffix=" (multivariable (BS CIs))")
# lm
fit = lm(nodes ~ age.factor + sex.factor + obstruct.factor + perfor.factor,
data=colon_s)
fit %>%
fit2df(estimate_suffix=" (multivariable)")
# lmerMod
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
random_effect = "hospital"
dependent = "nodes"
colon_s %>%
lmmixed(dependent, explanatory, random_effect) %>%
fit2df(estimate_suffix=" (multilevel")
# coxphlist
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "Surv(time, status)"
colon_s %>%
coxphuni(dependent, explanatory) %>%
fit2df(estimate_suffix=" (univariable)")
colon_s %>%
coxphmulti(dependent, explanatory) %>%
fit2df(estimate_suffix=" (multivariable)")
# coxph
fit = coxph(Surv(time, status) ~ age.factor + sex.factor + obstruct.factor + perfor.factor,
data = colon_s)
fit %>%
fit2df(estimate_suffix=" (multivariable)")
# }
Run the code above in your browser using DataLab