Learn R Programming

finalfit (version 0.8.9)

missing_pattern: Characterise missing data for finalfit models

Description

Using finalfit conventions, produces a missing data matrix using md.pattern.

Usage

missing_pattern(.data, dependent = NULL, explanatory = NULL)

Arguments

.data

Dataframe. Missing values must be coded NA.

dependent

Character vector usually of length 1, name of depdendent variable.

explanatory

Character vector of any length: name(s) of explanatory variables. to a missing data pattern (1=observed, 0=missing). Rows and columns are sorted in increasing amounts of missing information. The last column and row contain row and column counts, respectively.

Examples

Run this code
# NOT RUN {
library(finalfit)
library(dplyr)
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "mort_5yr"

colon_s %>%
	missing_pattern(dependent, explanatory)

# }

Run the code above in your browser using DataLab