Learn R Programming

finalfit (version 1.0.8)

ff_metrics: Generate common metrics for regression model results

Description

Generate common metrics for regression model results

Usage

ff_metrics(.data)

# S3 method for lm ff_metrics(.data)

# S3 method for lmlist ff_metrics(.data)

# S3 method for glm ff_metrics(.data)

# S3 method for glmlist ff_metrics(.data)

# S3 method for lmerMod ff_metrics(.data)

# S3 method for glmerMod ff_metrics(.data)

# S3 method for coxph ff_metrics(.data)

# S3 method for coxphlist ff_metrics(.data)

Value

Model metrics vector for output.

Arguments

.data

Model output.

Examples

Run this code
library(finalfit)

# glm
fit = glm(mort_5yr ~  age.factor + sex.factor + obstruct.factor + perfor.factor,
  data=colon_s, family="binomial")
fit %>%
  ff_metrics()

# glmlist
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "mort_5yr"
colon_s %>%
  glmmulti(dependent, explanatory) %>%
  ff_metrics()

# glmerMod
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
random_effect = "hospital"
dependent = "mort_5yr"
colon_s %>%
  glmmixed(dependent, explanatory, random_effect) %>%
  ff_metrics()

# lm
fit = lm(nodes ~  age.factor + sex.factor + obstruct.factor + perfor.factor,
  data=colon_s)
fit %>%
  ff_metrics()

# lmerMod
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
random_effect = "hospital"
dependent = "nodes"

colon_s %>%
  lmmixed(dependent, explanatory, random_effect) %>%
  ff_metrics()

# coxphlist
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "Surv(time, status)"


colon_s %>%
  coxphmulti(dependent, explanatory) %>%
  ff_metrics()

# coxph
fit = survival::coxph(survival::Surv(time, status) ~ age.factor + sex.factor +
  obstruct.factor + perfor.factor,
  data = colon_s)

fit %>%
  ff_metrics()

Run the code above in your browser using DataLab