This function plots a set of vertical plots with kernel density distributions for univariate posterior distributions of the VBGF growth parameters \(L_{inf}\), \(K\), and \(Phi’\). The 95 interval and the most likely optimum fit estimate are shown for each parameter.
univariate_density(
res,
CI = 95,
use_hist = FALSE,
nbreaks = 10,
mar = c(1.5, 2, 2, 0),
oma = c(1.5, 0, 0, 0.5),
mgp = c(2, 0.5, 0),
tcl = -0.25,
cex = 1,
...
)This function returns just the described plot.
Object of class lfqBoot.
numeric. Confidence interval in % (default: 95).
logical Plot histogram in addition to smoothed kernel
density.
numeric vector specifying the number of breaks in the
histogram.
Additional arguments passed to par.
This function used the function kde to obtain kernel density
estimates for the VBGF growth parameters \(L_{inf}\), \(K\), and
\(Phi’\). The 95
posterior distribution) and the most likely optimum fit estimate (i.e., the
mode of each posterior distribution) are then plotted inside each vertical
plot. The input used for plotting is usually the result of a bootstrapped
growth analysis (i.e. a lfqBoot object generated by fishboot
functions such as ELEFAN_SA_boot, ELEFAN_GA_boot,
grotag_boot, or grolenage_boot).
data(alba_boot)
univariate_density(alba_boot)
Run the code above in your browser using DataLab