This function plots a swarm of von Bertalanffy growth functions (VBGF), as length vs time (age) curves, based on the results of bootstrap runs, with confidence intervals (CI).
vbgfCI_time(
res,
CI = 95,
agemax = NULL,
plot = TRUE,
add_legend = TRUE,
add_max_dens_legend = TRUE,
xlab = "Relative time",
ylab = "Length",
perm.col = adjustcolor("grey50", 0.1),
perm.lwd = 1,
ci.col = "black",
ci.lty = 2,
ci.lwd = 1,
maxd.col = "black",
maxd.lty = 1,
maxd.lwd = 2,
...
)A list containing:
$limCIA data.frame with CI limits by time.
$inCIA data.frame with logical values defining whether
bootstrapping samples are within each of the defined CIs.
$densityThe multivariate kernel density estimates for each sample.
$max_densA list with the VBGF parameter combination
having the maximum density estimate.
Object with \(L_{inf}\), \(K\) and \(t_0\), it could be a
data.frame, a tbl_df, a list, grotagBoot or a
lfqBoot object. See Details.
numeric. Confidence interval in % (default: 95).
numeric values indicating the maximum number of years to
project.
logical. If TRUE (default), a plot is returned,
otherwise just a list with levels limCI, inCI, density
and max_dens. See Value for a detailed description of each one.
logical. Should CI and max. density legend be added
(Default: `add_legend = TRUE`).
logical. Should maximum density line be added (Default: `add_max_dens_legend = TRUE`).
Label for x-axis
Label for y-axis
Color and width for each resample estimate line.
Color, type and width for CI line.
Color, type and width for maximum density line.
Extra arguments passed to the main plot function.
Each thin grey line represents the output of a single bootstrap run. The most
likely optimum (i.e., the mode of the posterior distribution) is shown as a
thick black line. The dashed lines show the upper and lower limits of the 95
confidence envelope. The input used for plotting is usually the result of a
bootstrapped growth analysis (i.e. a lfqBoot object generated by
fishboot functions such as ELEFAN_SA_boot,
ELEFAN_GA_boot, grotag_boot, or grolenage_boot).
data(alba_boot) # lfqBoot object
vbgfCI_time(res = alba_boot)
vbgfCI_time(res = alba_boot, CI = c(50, 95),
ci.col = c("red", "orange"))
data(bonito_boot) # grotagBoot object
LinfK_scatterhist(res = bonito_boot)
Run the code above in your browser using DataLab