Learn R Programming

fishmethods (version 1.3-0)

grotag: Maximum likelihood estimation of growth and growth variability from tagging data - Francis (1988)

Description

This function estimates parameters of Francis (1988)'s growth model using tagging data. The data are fitted using a constrained maximum likelihood optimization performed by optim using the "L-BFGS-B" method.

Usage

grotag(L1 = NULL, L2 = NULL, T1 = NULL, T2 = NULL, alpha = NULL, beta = NULL, 
       design = list(nu = 0, m = 0, p = 0, sea = 0), 
       stvalue = list(sigma = 0.9, nu = 0.4, m = -1, p = 0.01, u = 0.4, w = 0.4), 
       upper = list(sigma = 5, nu = 1, m = 2, p = 1, u = 1, w = 1), 
       lower = list(sigma = 0, nu = 0, m = -2, p = 0, u = 0, w = 0), gestimate = TRUE, 
       st.ga = NULL, st.gb = NULL, st.galow = NULL, st.gaup = NULL, st.gblow = NULL,
       st.gbup = NULL, control = list(maxit = 10000))

Arguments

L1
Vector of length at release of tagged fish
L2
Vector of length at recovery of tagged fish
T1
Vector of time at release of tagged fish
T2
Vector of time at recovery of tagged fish
alpha
Numeric value giving an arbitrary length alpha
beta
Numeric value giving an arbitrary length beta (beta > alpha)
design
List specifying the design of the model to estimate. Use 1 to designate whether a parameter(s) should be estimated. Type of parameters are: nu=growth variability (1 parameter), m=bias parameter of measurement error (1 parameter), p=outli
stvalue
Starting values of sigma (s) and depending on the design argument, nu, m, p, u, and w used as input in the nonlinear estimation (function optim) routine.
upper
Upper limit of the model parameters' (nu, m, p, u, and w) region to be investigated.
lower
Lower limit of the model parameters' (nu, m, p, u, and w) region to be investigated.
gestimate
Logical specifying whether starting values of ga and gb (growth increments of alpha and beta) should be estimated automatically. Default = TRUE.
st.ga
If gestimate=FALSE, user-specified starting value for ga.
st.gb
If gestimate=FALSE, user-specified starting value for gb.
st.galow
If gestimate=FALSE, user-specified lower limit for st.ga used in optimization.
st.gaup
If gestimate=FALSE, user-specified upper limit for st.ga used in optimization.
st.gblow
If gestimate=FALSE, user-specified lower limit for st.gb used in optimization.
st.gbup
If gestimate=FALSE, user-specified upper limit for st.gb used in optimization.
control
Additional controls passed to the optimization function optim.

Value

  • tablelist element containing the model output similar to Table 3 of Francis (1988). The Akaike's Information Criterion (AIC) is also added to the output.
  • VBparmslist element containing the conventional paramaters of the von Bertalanffy model (Linf and K).
  • correlationlist element containing the parameter correlation matrix.
  • predictedlist element containing the predicted values from the model.
  • residualslist element containing the residuals of the model fit.

Details

The methods of Francis (1988) are used on tagging data to the estimate of growth and growth variability. The estimation of all models discussed is allowed. The growth variability defined by equation 5 in the reference is used throughout.

References

Francis, R.I.C.C., 1988. Maximum likelihood estimation of growth and growth variability from tagging data. New Zealand Journal of Marine and Freshwater Research, 22, p.42-51.

Examples

Run this code
data(bonito)

#Model 4 of Francis (1988)
with(bonito,
 grotag(L1=L1, L2=L2, T1=T1, T2=T2,alpha=35,beta=55,
 	design=list(nu=1,m=1,p=1,sea=1),
 	stvalue=list(sigma=0.9,nu=0.4,m=-1,p=0,u=0.4,w=0.4),
 	upper=list(sigma=5,nu=1,m=2,p=0.5,u=1,w=1),
 	lower=list(sigma=0,nu=0,m=-2,p=0,u=0,w=0),control=list(maxit=1e4)))

Run the code above in your browser using DataLab