Usage
grotag(L1 = NULL, L2 = NULL, T1 = NULL, T2 = NULL, alpha = NULL, beta = NULL,
design = list(nu = 0, m = 0, p = 0, sea = 0),
stvalue = list(sigma = 0.9, nu = 0.4, m = -1, p = 0.01, u = 0.4, w = 0.4),
upper = list(sigma = 5, nu = 1, m = 2, p = 1, u = 1, w = 1),
lower = list(sigma = 0, nu = 0, m = -2, p = 0, u = 0, w = 0), gestimate = TRUE,
st.ga = NULL, st.gb = NULL, st.galow = NULL, st.gaup = NULL, st.gblow = NULL,
st.gbup = NULL, control = list(maxit = 10000))
Arguments
L1
Vector of length at release of tagged fish
L2
Vector of length at recovery of tagged fish
T1
Vector of time at release of tagged fish
T2
Vector of time at recovery of tagged fish
alpha
Numeric value giving an arbitrary length alpha
beta
Numeric value giving an arbitrary length beta (beta
> alpha
)
design
List specifying the design of the model to estimate. Use 1 to designate whether
a parameter(s) should be estimated. Type of parameters are: nu=growth variability (1 parameter),
m=bias parameter of measurement error (1 parameter), p=outli
stvalue
Starting values of sigma (s) and depending on
the design argument, nu, m, p, u, and w used as input in the nonlinear estimation
(function optim) routine.
upper
Upper limit of the model parameters' (nu, m, p, u, and w) region to be investigated.
lower
Lower limit of the model parameters' (nu, m, p, u, and w) region to be investigated.
gestimate
Logical specifying whether starting values of ga and gb (growth increments of alpha and beta)
should be estimated automatically. Default = TRUE.
st.ga
If gestimate=FALSE, user-specified starting value for ga.
st.gb
If gestimate=FALSE, user-specified starting value for gb.
st.galow
If gestimate=FALSE, user-specified lower limit for st.ga used in optimization.
st.gaup
If gestimate=FALSE, user-specified upper limit for st.ga used in optimization.
st.gblow
If gestimate=FALSE, user-specified lower limit for st.gb used in optimization.
st.gbup
If gestimate=FALSE, user-specified upper limit for st.gb used in optimization.
control
Additional controls passed to the optimization function optim.