tag_model_avg(..., global = NULL)
irm_cr
and irm_h
.
Averaging of model estimates follows the procedures in Burnham and Anderson (2002).
Variances of parameters are adjusted for overdispersion using the c-hat estimate from the global model
: sqrt(var*c-hat)
. If c-hat of the global model is <1, 69="" 75="" then="" c-hat="" is="" set="" to="" 1.="" the="" used="" calculate="" quasi-likelihood="" aic="" and="" aicc="" metrics="" for="" each="" model="" (see="" page="" in="" burnham="" anderson(2002)).="" qaicc="" differences="" among="" models="" are="" calculated="" by="" subtracting="" of="" from="" with="" smallest="" value.="" these="" akaike="" weights="" following="" formula="" on="" anderson="" (2002).="" weighted="" average="" standard="" error="" parameter="" estimates="" summing="" product="" model-specific="" weight="" estimate="" across="" all="" models.="" an="" unconditional="" also="" sqrt(sum(QAICc wgt of model i * (var of estimate of model i +(estimate of model i - avg of all estimates)^2))).1,>
irm_h
irm_cr
## This is a typical specification, not a working example
tag_model_avg(model1,model2,model3,model4,model5,model6,model7,global="model7")
Run the code above in your browser using DataLab