# NOT RUN {
No.D.D=0:7 #assigning the random variables
Obs.fre.1=c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters=suppressWarnings(bbmle::mle2(EstMLEBetaCorrBin,start = list(cov=0.0050,a=10,b=10),
data = list(x=No.D.D,freq=Obs.fre.1)))
covBetaCorrBin=bbmle::coef(parameters)[1]
aBetaCorrBin=bbmle::coef(parameters)[2]
bBetaCorrBin=bbmle::coef(parameters)[3]
#fitting when the random variable,frequencies,covariance, a and b are given
results<-fitBetaCorrBin(No.D.D,Obs.fre.1,covBetaCorrBin,aBetaCorrBin,bBetaCorrBin)
results
#extract AIC value
AIC(results)
#extract fitted values
fitted(results)
# }
Run the code above in your browser using DataLab