# NOT RUN {
No.D.D=0:7 #assigning the random variables
Obs.fre.1=c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters=suppressWarnings(bbmle::mle2(EstMLEGrassiaIIBin,start = list(a=0.1,b=0.1),
data = list(x=No.D.D,freq=Obs.fre.1)))
aGIIBin=bbmle::coef(parameters)[1] #assigning the estimated a
bGIIBin=bbmle::coef(parameters)[2] #assigning the estimated b
#fitting when the random variable,frequencies,shape parameter values are given.
results<-fitGrassiaIIBin(No.D.D,Obs.fre.1,aGIIBin,bGIIBin)
results
#extracting the expected frequencies
fitted(results)
#extracting the residuals
residuals(results)
# }
Run the code above in your browser using DataLab