Learn R Programming

fitdistcp (version 0.1.1)

gev_k12_ppm_minusloglik: Temporary dummy for one of the ppm models

Description

Temporary dummy for one of the ppm models

Usage

gev_k12_ppm_minusloglik(x)

Value

q**** returns a list containing at least the following:

  • ml_params: maximum likelihood estimates for the parameters.

  • ml_value: the value of the log-likelihood at the maximum.

  • standard_errors: estimates of the standard errors on the parameters, from the inverse observed information matrix.

  • ml_quantiles: quantiles calculated using maximum likelihood.

  • cp_quantiles: predictive quantiles calculated using a calibrating prior.

  • maic: the AIC score for the maximum likelihood model, times -1/2.

  • cp_method: a comment about the method used to generate the cp prediction.

For models with predictors, q**** additionally returns:

  • predictedparameter: the estimated value for parameter, as a function of the predictor.

  • adjustedx: the detrended values of x

r**** returns a list containing the following:

  • ml_params: maximum likelihood estimates for the parameters.

  • ml_deviates: random deviates calculated using maximum likelihood.

  • cp_deviates: predictive random deviates calculated using a calibrating prior.

  • cp_method: a comment about the method used to generate the cp prediction.

d**** returns a list containing the following:

  • ml_params: maximum likelihood estimates for the parameters.

  • ml_pdf: density function from maximum likelihood.

  • cp_pdf: predictive density function calculated using a calibrating prior (not available in EVT routines, for mathematical reasons, unless using RUST).

  • cp_method: a comment about the method used to generate the cp prediction.

p*** returns a list containing the following:

  • ml_params: maximum likelihood estimates for the parameters.

  • ml_cdf: distribution function from maximum likelihood.

  • cp_cdf: predictive distribution function calculated using a calibrating prior (not available in EVT routines, for mathematical reasons, unless using RUST).

  • cp_method: a comment about the method used to generate the cp prediction.

t*** returns a list containing the following:

  • theta_samples: random samples from the parameter posterior.

Arguments

x

a vector of training data values