Learn R Programming

fitdistcp (version 0.1.1)

manf: Blank function I use for setting up the man page information for the functions

Description

Blank function I use for setting up the man page information for the functions

Usage

manf(
  dim,
  vv,
  ml_params,
  nx,
  nxx,
  x,
  xx,
  t,
  t1,
  t2,
  t3,
  tt,
  tt1,
  tt2,
  tt3,
  tt2d,
  tt3d,
  t0,
  t01,
  t02,
  t03,
  t10,
  t20,
  t30,
  n0,
  n10,
  n20,
  p,
  n,
  y,
  ics,
  ta,
  ta0,
  muhat0,
  v1,
  v1hat,
  v1h,
  d1,
  fd1,
  v2,
  v2hat,
  v2h,
  d2,
  fd2,
  v3,
  v3hat,
  v3h,
  d3,
  fd3,
  v4,
  v4hat,
  v4h,
  d4,
  fd4,
  v5,
  v5hat,
  v5h,
  d5,
  v6,
  v6hat,
  v6h,
  d6,
  minxi,
  maxxi,
  ximin,
  ximax,
  fdalpha,
  kscale,
  kloc,
  kshape,
  kdf,
  kbeta,
  alpha,
  ymn,
  slope,
  mu,
  sigma,
  sigma1,
  sigma2,
  scale,
  shape,
  xi,
  xi1,
  xi2,
  lambda,
  log,
  mm,
  nn,
  rr,
  lddi,
  lddi_k2,
  lddi_k3,
  lddi_k4,
  lddd,
  lddd_k2,
  lddd_k3,
  lddd_k4,
  lambdad,
  lambdad_cp,
  lambdad_rhp,
  lambdad_flat,
  lambdad_rh_mle,
  lambdad_rh_flat,
  lambdad_jp,
  lambdad_custom,
  means,
  waicscores,
  logscores,
  extramodels,
  pdf,
  predictordata,
  nonnegslopesonly,
  rnonnegslopesonly,
  customprior,
  prior,
  params,
  yy,
  pp,
  dlogpi,
  debug,
  centering,
  aderivs
)

Value

No return value

Arguments

dim

number of parameters

vv

parameters

ml_params

parameters

nx

length of training data

nxx

length of training data

x

a vector of training data values

xx

a vector of training data values

t

a vector or matrix of predictors

t1

a vector of predictors for the mean

t2

a vector of predictors for the sd

t3

a vector of predictors for the shape

tt

a vector of predictors

tt1

a vector of predictors for the mean

tt2

a vector of predictors for the sd

tt3

a vector of predictors for the shape

tt2d

a matrix of predictors (nx by 2)

tt3d

a matrix of predictors (nx by 3)

t0

a single value of the predictor (specify either t0 or n0 but not both)

t01

a single value of the predictor (specify either t01 or n01 but not both)

t02

a single value of the predictor (specify either t02 or n02 but not both)

t03

a single value of the predictor (specify either t03 or n03 but not both)

t10

a single value of the predictor for the mean (specify either t10 or n10 but not both)

t20

a single value of the predictor for the sd (specify either t20 or n20 but not both)

t30

a single value of the predictor for the shape (specify either t30 or n30 but not both)

n0

an index for the predictor (specify either t0 or n0 but not both)

n10

an index for the predictor for the mean (specify either t10 or n10 but not both)

n20

an index for the predictor for the sd (specify either t10 or n10 but not both)

p

a vector of probabilities at which to generate predictive quantiles

n

number of random samples required

y

a vector of values at which to calculate the density and distribution functions

ics

initial conditions for the maximum likelihood search

ta

predictor residuals

ta0

predictor residual at the point being predicted

muhat0

muhat at the point being predicted

v1

first parameter

v1hat

first parameter

v1h

first parameter

d1

the delta used in the numerical derivatives with respect to the parameter

fd1

the fractional delta used in the numerical derivatives with respect to the parameter

v2

second parameter

v2hat

second parameter

v2h

second parameter

d2

the delta used in the numerical derivatives with respect to the parameter

fd2

the fractional delta used in the numerical derivatives with respect to the parameter

v3

third parameter

v3hat

third parameter

v3h

third parameter

d3

the delta used in the numerical derivatives with respect to the parameter

fd3

the fractional delta used in the numerical derivatives with respect to the parameter

v4

fourth parameter

v4hat

fourth parameter

v4h

fourth parameter

d4

the delta used in the numerical derivatives with respect to the parameter

fd4

the fractional delta used in the numerical derivatives with respect to the parameter

v5

fifth parameter

v5hat

fifth parameter

v5h

fifth parameter

d5

the delta used in the numerical derivatives with respect to the parameter

v6

sixth parameter

v6hat

sixth parameter

v6h

sixth parameter

d6

the delta used in the numerical derivatives with respect to the parameter

minxi

minimum value of shape parameter xi

maxxi

maximum value of shape parameter xi

ximin

minimum value of shape parameter xi

ximax

maximum value of shape parameter xi

fdalpha

the fractional delta used in the numerical derivatives with respect to probability, for calculating the pdf as a function of quantiles

kscale

the known scale parameter

kloc

the known location parameter

kshape

the known shape parameter

kdf

the known degrees of freedom parameter

kbeta

the known beta parameter

alpha

a vector of values of alpha (one minus probability)

ymn

the location parameter of the function of the predictor

slope

the slope of the function of the predictor

mu

the location parameter of the distribution

sigma

the sigma parameter of the distribution

sigma1

first coefficient for the sigma parameter of the distribution

sigma2

second coefficient for the sigma parameter of the distribution

scale

the scale parameter of the distribution

shape

the shape parameter of the distribution

xi

the shape parameter of the distribution

xi1

first coefficient for the shape parameter of the distribution

xi2

second coefficient for the shape parameter of the distribution

lambda

the lambda parameter of the distribution

log

logical for the density evaluation

mm

an index for which derivative to calculate

nn

an index for which derivative to calculate

rr

an index for which derivative to calculate

lddi

inverse observed information matrix

lddi_k2

inverse observed information matrix, fixed shape parameter

lddi_k3

inverse observed information matrix, fixed shape parameter

lddi_k4

inverse observed information matrix, fixed shape parameter

lddd

third derivative of log-likelihood

lddd_k2

third derivative of log-likelihood, fixed shape parameter

lddd_k3

third derivative of log-likelihood, fixed shape parameter

lddd_k4

third derivative of log-likelihood, fixed shape parameter

lambdad

derivative of the log prior

lambdad_cp

derivative of the log prior

lambdad_rhp

derivative of the log RHP prior

lambdad_flat

derivative of the log flat prior

lambdad_rh_mle

derivative of the log CRHP-MLE prior

lambdad_rh_flat

derivative of the log CRHP-FLAT prior

lambdad_jp

derivative of the log JP prior

lambdad_custom

custom value of the derivative of the log prior

means

logical that indicates whether to return analytical estimates for the distribution means (longer runtime)

waicscores

logical that indicates whether to return estimates for the waic1 and waic2 scores (longer runtime)

logscores

logical that indicates whether to return leave-one-out estimates estimates of the log-score (much longer runtime)

extramodels

logical that indicates whether to add three additional prediction models

pdf

logical that indicates whether to return density functions evaluated at quantiles specified by input probabilities

predictordata

logical that indicates whether to calculate and return predictordata

nonnegslopesonly

logical that indicates whether to disallow non-negative slopes

rnonnegslopesonly

logical that indicates whether to disallow non-negative slopes

customprior

a custom value for the slope of the log prior at the maxlik estimate

prior

logical indicating which prior to use

params

model parameters for calculating logf

yy

vector of samples

pp

vector of probabilities

dlogpi

gradient of the log prior

debug

debug flag

centering

indicates whether the routine should center the data or not

aderivs

logical for whether to use analytic derivatives (instead of numerical)