Make prediction from one model
reltest_predict(
model,
xx,
tt,
tt1,
tt2,
tt3,
n0,
n10,
n20,
n30,
pp,
params,
dmgs = TRUE,
debug = FALSE,
aderivs = TRUE,
unbiasedv = FALSE,
pwm = FALSE,
minxi = -10,
maxxi = 10
)
Two vectors
which distribution to test. Possibles values are
"exp
",
"pareto_k2
",
"halfnorm
",
"unif
",
"norm
",
"norm_dmgs
",
"gnorm_k3
",
"lnorm
",
"lnorm_dmgs
",
"logis
",
"lst_k3
",
"cauchy
",
"gumbel
",
"frechet_k1
",
"weibull
",
"gev_k3
",
"exp_p1
",
"pareto_p1k2
",
"norm_p1
",
"lnorm_p1
",
"logis_p1
",
"lst_p1k3
",
"cauchy_p1
",
"gumbel_p1
",
"frechet_p2k1
",
"weibull_p2
",
"exp_p1k4
",
"norm_p12
",
"lst_p12k3
",
"gamma
",
"invgamma
",
"invgauss
",
"gev
",
"gpd_k1
",
"gev_p1
".
"gev_p12
".
"gev_p123
".
training data
predictor vector
predictor vector 1
predictor vector 2
predictor vector 3
index for predictor vector
index for predictor vector 1
index for predictor vector 2
index for predictor vector 2
probabilites at which to make quantile predictions
model parameters
flag for whether to run dmgs calculations or not
flag for turning debug messages on
a logical for whether to use analytic derivatives (instead of numerical)
a logical for whether to use the unbiased variance instead of maxlik (for the normal)
a logical for whether to use PWM instead of maxlik (for the GEV)
minimum value for EVT shape parameter
maximum value for EVT shape parameter