Random training data from one model
reltest_simulate(
model = "exp",
nx = 20,
tt,
tt1,
tt2,
tt3,
params,
minxi = -10,
maxxi = -10
)Vector
which distribution to test. Possibles values are
"exp",
"pareto_k2",
"halfnorm",
"unif",
"norm",
"norm_dmgs",
"gnorm_k3",
"lnorm",
"lnorm_dmgs",
"logis",
"lst_k3",
"cauchy",
"gumbel",
"frechet_k1",
"weibull",
"gev_k3",
"exp_p1",
"pareto_p1k2",
"norm_p1",
"lnorm_p1",
"logis_p1",
"lst_p1k3",
"cauchy_p1",
"gumbel_p1",
"frechet_p2k1",
"weibull_p2",
"gev_p1k3",
"norm_p12",
"lst_p12k3",
"gamma",
"invgamma",
"invgauss",
"gev",
"gpd_k1",
"gev_p1".
"gev_p12".
"gev_p123".
the length of the training data to use.
predictor vector
predictor vector 1
predictor vector 2
predictor vector 2
values for the parameters for the specified distribution
minimum value for EVT shape parameter
maximum value for EVT shape parameter