Free Access Week - Data Engineering + BI
Data Engineering and BI courses are free this week!
Free Access Week - Jun 2-8

fixest (version 0.11.2)

AIC.fixest: Aikake's an information criterion

Description

This function computes the AIC (Aikake's, an information criterion) from a fixest estimation.

Usage

# S3 method for fixest
AIC(object, ..., k = 2)

Value

It return a numeric vector, with length the same as the number of objects taken as arguments.

Arguments

object

A fixest object. Obtained using the functions femlm, feols or feglm.

...

Optionally, more fitted objects.

k

A numeric, the penalty per parameter to be used; the default k = 2 is the classical AIC (i.e. AIC=-2*LL+k*nparams).

Author

Laurent Berge

Details

The AIC is computed as: AIC=2×LogLikelihood+k×nbParams with k the penalty parameter.

You can have more information on this criterion on AIC.

See Also

See also the main estimation functions femlm, feols or feglm. Other statictics methods: BIC.fixest, logLik.fixest, nobs.fixest.

Examples

Run this code

# two fitted models with different expl. variables:
res1 = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +
             Petal.Width | Species, iris)
res2 = femlm(Sepal.Length ~ Petal.Width | Species, iris)

AIC(res1, res2)
BIC(res1, res2)


Run the code above in your browser using DataLab