## load library
library(flare)
## generate data
set.seed(123)
n=100
d=200
d1=10
rho0=0.3
lambda=c(3:1)*sqrt(log(d)/n)
Sigma=matrix(0,nrow=d,ncol=d)
Sigma[1:d1,1:d1]=rho0
diag(Sigma)=1
mu=rep(0,d)
X=mvrnorm(n=2*n,mu=mu,Sigma=Sigma)
X.fit=X[1:n,]
X.pred=X[(n+1):(2*n),]
eps=rt(n=n,df=n-1)
beta=c(rep(sqrt(1/3),3),rep(0,d-3))
Y.fit=X.fit%*%beta+eps
## Regression with "dantzig".
out=slim(X=X.fit,Y=Y.fit,lambda=lambda,method = "lq",q=1)
## Display results
Y=predict(out,X.pred)Run the code above in your browser using DataLab