## load library
library(flare)
## generate data
n = 100
d = 200
X = matrix(rnorm(n*d), n, d)
beta = c(3,2,0,1.5,rep(0,d-4))
eps = rnorm(n)
Y = X%*%beta + eps
nlamb = 5
ratio = 0.3
## Regression with "dantzig", general "lq" and "lasso" respectively
out1=slim(X=X,Y=Y,nlambda=nlamb,lambda.min.ratio=ratio,method = "dantzig")
out2=slim(X=X,Y=Y,nlambda=nlamb,lambda.min.ratio=ratio,method = "lq",q=1)
out3=slim(X=X,Y=Y,nlambda=nlamb,lambda.min.ratio=ratio,method = "lq",q=1.5)
out4=slim(X=X,Y=Y,nlambda=nlamb,lambda.min.ratio=ratio,method = "lq",q=2)
out5=slim(X=X,Y=Y,nlambda=nlamb,lambda.min.ratio=ratio,method = "lasso")
## Display results
print(out4)
plot(out4)
coef(out4)Run the code above in your browser using DataLab