
Last chance! 50% off unlimited learning
Sale ends in
"slim"
Predicting responses of the given design data.
# S3 method for slim
predict(object, newdata, lambda.idx = c(1:3), Y.pred.idx = c(1:5), …)
An object with S3 class "slim"
An optional data frame in which to look for variables with which to predict. If omitted, the traning data of the are used.
The indices of the regularizaiton parameters in the solution path to be displayed. The default values are c(1:3)
.
The indices of the predicted response vectors in the solution path to be displayed. The default values are c(1:5)
.
Arguments to be passed to methods.
The predicted response vectors based on the estimated models.
predict.slim
produces predicted values of the responses of the newdata
from the estimated beta
values in the object
, i.e.
slim
and flare-package
.
# NOT RUN {
## load library
library(flare)
## generate data
set.seed(123)
n = 100
d = 200
d1 = 10
rho0 = 0.3
lambda = c(3:1)*sqrt(log(d)/n)
Sigma = matrix(0,nrow=d,ncol=d)
Sigma[1:d1,1:d1] = rho0
diag(Sigma) = 1
mu = rep(0,d)
X = mvrnorm(n=2*n,mu=mu,Sigma=Sigma)
X.fit = X[1:n,]
X.pred = X[(n+1):(2*n),]
eps = rt(n=n,df=n-1)
beta = c(rep(sqrt(1/3),3),rep(0,d-3))
Y.fit = X.fit%*%beta+eps
## Regression with "dantzig".
out=slim(X=X.fit,Y=Y.fit,lambda=lambda,method = "lq",q=1)
## Display results
Y=predict(out,X.pred)
# }
Run the code above in your browser using DataLab