# Define mean, correlation, and standard deviations
means <- c(3, 2, 0.9)
sdevs <- c(0.25,1.5,0.8)
CORR <- matrix(c(1, -0.3, 0.5, -0.3, 1, -0.2, 0.5, -0.2, 1), 3, 3)
# Create the Cholesky decomposition matrix and set values for ndraws, etc.
ndraws <- 5000
scrambled <- TRUE
dist <- "normal"
# simulated the data
simulated_data <- corr_haltons(means, stdev=sdevs, correlations=CORR,
ndraws=ndraws, scrambled=scrambled,
dist=dist)
# look at the mean, standard deviation, and correlation of the simulated data
apply(simulated_data, 2, mean)
apply(simulated_data, 2, sd)
cor(simulated_data)
# providing a cholesky decomposition matrix
dist <- "normal"
cholesky <- chol(cor2cov(CORR, sdevs))
simulated_data <- corr_haltons(means, cholesky=cholesky, ndraws=ndraws,
scrambled=scrambled, dist=dist)
apply(simulated_data, 2, mean)
apply(simulated_data, 2, sd)
cor(simulated_data)
# Truncated normal
dist <- "truncated_normal"
lower <- 0
upper <- 30
simulated_data <- corr_haltons(means, cholesky=cholesky, ndraws=ndraws,
scrambled=scrambled, dist=dist,
lower=lower, upper=upper)
apply(simulated_data, 2, mean)
apply(simulated_data, 2, sd)
cor(simulated_data)
Run the code above in your browser using DataLab