The quadratic phase is parameterized so that the curve reaches exactly
k at t2. Let \(\Delta = t_2 - t_1\). The quadratic coefficient
\(c\) is computed internally as:
$$
c = \frac{k - b\Delta}{\Delta^2}.
$$
$$
f(t; t_1, t_2, dt, b, k, \beta) =
\begin{cases}
0 & \text{if } t < t_1 \\
b(t - t_1) + c(t - t_1)^2 & \text{if } t_1 \le t \le t_2 \\
k & \text{if } t_2 < t \le t_3 \\
k + \beta (t - t_3) & \text{if } t > t_3
\end{cases}
$$
where \(t_3 = t_2 + dt\).
The function is continuous at t1, t2, and t3. It is not
differentiable at t3 unless beta = 0.