Estimate the Kullback-Leibler divergence of several distributions.
Usage
KLdiv(object, ...)
## S3 method for class 'matrix':
KLdiv(object, eps=1e-4, ...)
Arguments
object
see Methods section below
eps
probabilities below this treshold are discarded for
numerical stability
...
Passed to the matrix method.
Value
A matrix of of KL divergences where the rows correspond to using the
respective distribution as $f()$ in the formula above.
Details
Estimates $$\int f(x) (\log f(x) - \log g(x)) dx$$
for distributions with densities $f()$ and $g()$.
References
S. Kullback and R. A. Leibler. On information and sufficiency. The
Annals of Mathematical Statistics 22(1), pages 79-86, 1951.
Friedrich Leisch. Exploring the structure of mixture model
components. In Jaromir Antoch, editor, Compstat 2004 - Proceedings in
Computational Statistics, pages 1405-1412. Physika Verlag, Heidelberg,
Germany, 2004. ISBN 3-7908-1554-3.