dgompertz(x, shape, rate = 1, log = FALSE)
pgompertz(q, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
qgompertz(p, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
rgompertz(n, shape, rate = 1)
hgompertz(x, shape, rate = 1, log=FALSE)
Hgompertz(x, shape, rate = 1, log=FALSE)
length(n) > 1
, the length
is taken to be the number required.dgompertz
gives the density,
pgompertz
gives the distribution function,
qgompertz
gives the quantile function,
hgompertz
gives the hazard function,
Hgompertz
gives the cumulative hazard function, and
rgompertz
generates random deviates.shape
parameter $a$ and
rate
parameter $b$ has probability density function
$$f(x | a, b) = be^{ax}\exp(-b/a (e^{ax} - 1))$$
and hazard
$$h(x | a, b) = b e^{ax}$$
The hazard is increasing for shape $a>0$ and decreasing for
$a<0$. for="" $a="0$" the="" gompertz="" is="" equivalent="" to="" exponential="" distribution="" with="" constant="" hazard="" and="" rate="" $b$.="" probability="" function="" $$f(x="" |="" a,="" b)="1" -="" \exp(-b="" a="" (e^{ax}="" 1))$$="" thus="" if="" $a$="" negative,="" letting="" $x$="" tend="" infinity="" shows="" that="" there="" non-zero="" $1="" \exp(b="" a)$="" of="" living="" forever.="" on="" these="" occasions="" qgompertz and rgompertz
will return
Inf
.0$.>
dexp