Learn R Programming

flint (version 0.1.0)

arb_hypgeom_bessel_j: Bessel and Related Functions

Description

Compute the principal branches of the (modified) Bessel functions of the first and second kind. The Bessel functions of the first and second kind solve Bessel's equation $$z^{2} \dfrac{\text{d}^{2} w}{\text{d} z^{2}} + z \dfrac{\text{d} w}{\text{d} z} + (z^{2} - \nu^{2}) w = 0$$ and are given by $$\begin{aligned} J_{\nu}(z) &= (\tfrac{1}{2} z)^{\nu} \sum_{k = 0}^{\infty} (-1)^{k} \frac{(\frac{1}{4} z^{2})^{k}}{k! \Gamma(\nu + k + 1)} \\ Y_{\nu}(z) &= \frac{Y_{\nu}(z) \cos(\nu \pi) - J_{-\nu}(z)}{\sin(\nu \pi)} \end{aligned}$$ The modified Bessel functions of the first and second kind solve the modified Bessel's equation $$z^{2} \dfrac{\text{d}^{2} w}{\text{d} z^{2}} + z \dfrac{\text{d} w}{\text{d} z} + (z^{2} - \nu^{2}) w = 0$$ and are given by $$\begin{aligned} I_{\nu}(z) &= (\tfrac{1}{2} z)^{\nu} \sum_{k = 0}^{\infty} \frac{(\frac{1}{4} z^{2})^{k}}{k! \Gamma(\nu + k + 1)} \\ K_{\nu}(z) &= \frac{\pi}{2} \frac{I_{-\nu}(z) - I_{\nu}(z)}{\sin(\nu \pi)} \end{aligned}$$

Usage

arb_hypgeom_bessel_j(nu, x, prec = flintPrec())
acb_hypgeom_bessel_j(nu, z, prec = flintPrec())

arb_hypgeom_bessel_y(nu, x, prec = flintPrec()) acb_hypgeom_bessel_y(nu, z, prec = flintPrec())

arb_hypgeom_bessel_i(nu, x, prec = flintPrec()) acb_hypgeom_bessel_i(nu, z, prec = flintPrec())

arb_hypgeom_bessel_k(nu, x, prec = flintPrec()) acb_hypgeom_bessel_k(nu, z, prec = flintPrec())

Value

An arb or acb vector storing function values with error bounds. Its length is the maximum of the lengths of the arguments or zero (zero if any argument has length zero). The arguments are recycled as necessary.

Arguments

nu, x, z

numeric, complex, arb, or acb vectors.

prec

a numeric or slong vector indicating the desired precision as a number of bits.

References

The FLINT documentation of the underlying C functions: https://flintlib.org/doc/arb_hypgeom.html, https://flintlib.org/doc/acb_hypgeom.html

NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/10

See Also

Classes arb and acb; arb_hypgeom_gamma_lower and arb_hypgeom_beta_lower for the “incomplete” gamma and beta functions.

Examples

Run this code
## TODO

Run the code above in your browser using DataLab