Compute the principal branches of the (modified) Bessel functions of the first and second kind. The Bessel functions of the first and second kind solve Bessel's equation $$z^{2} \dfrac{\text{d}^{2} w}{\text{d} z^{2}} + z \dfrac{\text{d} w}{\text{d} z} + (z^{2} - \nu^{2}) w = 0$$ and are given by $$\begin{aligned} J_{\nu}(z) &= (\tfrac{1}{2} z)^{\nu} \sum_{k = 0}^{\infty} (-1)^{k} \frac{(\frac{1}{4} z^{2})^{k}}{k! \Gamma(\nu + k + 1)} \\ Y_{\nu}(z) &= \frac{Y_{\nu}(z) \cos(\nu \pi) - J_{-\nu}(z)}{\sin(\nu \pi)} \end{aligned}$$ The modified Bessel functions of the first and second kind solve the modified Bessel's equation $$z^{2} \dfrac{\text{d}^{2} w}{\text{d} z^{2}} + z \dfrac{\text{d} w}{\text{d} z} + (z^{2} - \nu^{2}) w = 0$$ and are given by $$\begin{aligned} I_{\nu}(z) &= (\tfrac{1}{2} z)^{\nu} \sum_{k = 0}^{\infty} \frac{(\frac{1}{4} z^{2})^{k}}{k! \Gamma(\nu + k + 1)} \\ K_{\nu}(z) &= \frac{\pi}{2} \frac{I_{-\nu}(z) - I_{\nu}(z)}{\sin(\nu \pi)} \end{aligned}$$
arb_hypgeom_bessel_j(nu, x, prec = flintPrec())
acb_hypgeom_bessel_j(nu, z, prec = flintPrec())arb_hypgeom_bessel_y(nu, x, prec = flintPrec())
acb_hypgeom_bessel_y(nu, z, prec = flintPrec())
arb_hypgeom_bessel_i(nu, x, prec = flintPrec())
acb_hypgeom_bessel_i(nu, z, prec = flintPrec())
arb_hypgeom_bessel_k(nu, x, prec = flintPrec())
acb_hypgeom_bessel_k(nu, z, prec = flintPrec())
An arb
or acb
vector
storing function values with error bounds. Its length is the maximum
of the lengths of the arguments or zero (zero if any argument has
length zero). The arguments are recycled as necessary.
numeric, complex, arb
, or
acb
vectors.
a numeric or slong
vector indicating the
desired precision as a number of bits.
The FLINT documentation of the underlying C functions: https://flintlib.org/doc/arb_hypgeom.html, https://flintlib.org/doc/acb_hypgeom.html
NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/10
Classes arb
and acb
;
arb_hypgeom_gamma_lower
and
arb_hypgeom_beta_lower
for the “incomplete” gamma
and beta functions.