Learn R Programming

flowMatch (version 1.8.0)

flowMatch-package: Matching cell populations and building meta-clusters and templates from a collection of FC samples.

Description

Matching cell populations and building meta-clusters and templates from a collection of FC samples.

Arguments

Details

Package:
flowMatch
Type:
Package
Version:
1.0
Date:
2013-08-01
License:
GPL (>= 2)
LazyLoad:
yes

References

Azad, Ariful and Pyne, Saumyadipta and Pothen, Alex (2012), Matching phosphorylation response patterns of antigen-receptor-stimulated T cells via flow cytometry; BMC Bioinformatics, 13 (Suppl 2), S10. Azad, Ariful and Langguth, Johannes and Fang, Youhan and Qi, Alan and Pothen, Alex (2010), Identifying rare cell populations in comparative flow cytometry; Algorithms in Bioinformatics, Springer, 162-175.

Examples

Run this code
## ------------------------------------------------
## load data
## ------------------------------------------------

library(healthyFlowData)
data(hd)

## ------------------------------------------------
## Retrieve each sample, clsuter it and store the
## clustered samples in a list
## ------------------------------------------------
set.seed(1234) # for reproducable clustering 
cat('Clustering samples: ')
clustSamples = list()
for(i in 1:length(hd.flowSet))
{
  cat(i, ' ')
  sample1 = exprs(hd.flowSet[[i]])
  clust1 = kmeans(sample1, centers=4, nstart=20)
  cluster.labels1 = clust1$cluster
  clustSample1 = ClusteredSample(labels=cluster.labels1, sample=sample1)
  clustSamples = c(clustSamples, clustSample1)
}

## ------------------------------------------------
## Create a template from the list of clustered samples and plot functions
## ------------------------------------------------

template = create.template(clustSamples)
summary(template)

## plot the tree denoting the hierarchy of the samples in a template
tree = template.tree(template)

## plot the template in terms of the meta-clusters
## option-1 (default): plot contours of each cluster of the meta-clusters
plot(template)

Run the code above in your browser using DataLab