Usage
flowMeans(x, varNames=NULL, MaxN = NA, NumC = NA, iter.max = 50, nstart = 10,
Mahalanobis = TRUE, Standardize = TRUE, Update = "Mahalanobis", OrthagonalResiduals=TRUE,
MaxCovN=NA, MaxKernN=NA, addNoise=TRUE)
Arguments
x
A matrix, data frame of observations, or object of class flowFrame
. Rows correspond to observations and columns correspond to variables.
varNames
A character vector specifying the variables (columns) to be included in clustering. When it is left unspecified, all the variables will be used.
MaxN
Maximum number of clusters. If set to NA (default) the value will be
estimated automatically.
NumC
Number of clusters. If set to NA (default) the value will be
estimated automatically.
iter.max
The maximum number of iterations allowed.
nstart
The number of random sets used for initialization.
Mahalanobis
Boolean value. If TRUE (default) mahalanobis distance will be
used. Otherwised, euclidean distance will be used.
Standardize
Boolean value. If TRUE (default) the data will be transformed to the
[0,1] interval.
Update
String value. If set to "Mahalanobis" the distance function will be
updated at each merging iteration with recalculating mahalanobis
distances. If set to "Mean" the distance matrix will be updated
after each merging step with averaging. If set to "None" the
distance matrix will not be updated.
MaxCovN
Maximum number of points, used for calculating the covariance. If set
to NA (default), all the points will be used.)
MaxKernN
Maximum number of points, used for counting the modes using kernel
density estimation. If set to NA (default), all the points will be used.)
addNoise
Boolean value. Determines if uniform noise must be added to the data
to prevent singularity issues or not.
OrthagonalResiduals
Boolean value, indicates if the residuals must be transformed to
orthagonal distance or not.