Learn R Programming

fmcmc (version 0.5-2)

A friendly MCMC framework

Description

Provides a friendly (flexible) Markov Chain Monte Carlo (MCMC) framework for implementing Metropolis-Hastings algorithm in a modular way allowing users to specify automatic convergence checker, personalized transition kernels, and out-of-the-box multiple MCMC chains using parallel computing. Most of the methods implemented in this package can be found in Brooks et al. (2011, ISBN 9781420079425). Among the methods included, we have: Haario (2001) Adaptive Metropolis, Vihola (2012) Robust Adaptive Metropolis, and Thawornwattana et al. (2018) Mirror transition kernels.

Copy Link

Version

Install

install.packages('fmcmc')

Monthly Downloads

317

Version

0.5-2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

George Vega Yon

Last Published

August 29th, 2023

Functions in fmcmc (0.5-2)

fmcmc

A friendly MCMC framework
kernel_mirror

Mirror Transition Kernels
append_chains

Append MCMC chains (objects of class coda::mcmc)
MCMC

Markov Chain Monte Carlo
kernel_adapt

Adaptive Metropolis (AM) Transition Kernel
kernel_new

Transition Kernels for MCMC
check_initial

Checks the initial values of the MCMC
cov_recursive

Recursive algorithms for computing variance and mean
fmcmc-deprecated

Deprecated methods in fmcmc
convergence-checker

Convergence Monitoring
plan_update_sequence

Parameters' update sequence
new_progress_bar

Progress bar
kernel_normal

Gaussian Transition Kernel
reflect_on_boundaries

Reflective Boundaries
mcmc-loop

Functions to interact with the main loop
kernel_ram

Robust Adaptive Metropolis (RAM) Transition Kernel
lifeexpect

Life expectancy in the US (2020)
kernel_unif

Uniform Transition Kernel
mcmc-output

Information about the last MCMC call