dshw(y, period1, period2, h=2*max(period1,period2),
alpha=NULL, beta=NULL, gamma=NULL, omega=NULL, phi=NULL,
lambda=NULL, armethod=TRUE, model = NULL)msts object with two seasonal periods or a numeric vector.y is not an msts object.y is not an msts object.NULL, the parameter is estimated using least squares.NULL, the parameter is estimated using least squares.NULL, the parameter is estimated using least squares.NULL, the parameter is estimated using least squares.NULL, the parameter is estimated using least squares.NULL. Otherwise, data transformed before model is estimated.forecast".The function summary is used to obtain and print a summary of the
results, while the function plot produces a plot of the forecasts.
The generic accessor functions fitted.values and residuals extract useful features of
the value returned by meanf.
An object of class "forecast" is a list containing at least the following elements:
object itself or the time series used to create the model stored as object).period1=48 for the daily period and period2=336 for the weekly period. The smoothing parameter notation used here is different from that in Taylor (2003); instead it matches that used in Hyndman et al (2008) and that used for the ets function.Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008)
Forecasting with exponential smoothing: the state space approach,
Springer-Verlag.
HoltWinters, ets.fcast <- dshw(taylor)
plot(fcast)
t <- seq(0,5,by=1/20)
x <- exp(sin(2*pi*t) + cos(2*pi*t*4) + rnorm(length(t),0,.1))
fit <- dshw(x,20,5)
plot(fit)Run the code above in your browser using DataLab