y.
ses(y, h=10, level=c(80,95), fan=FALSE, initial=c("optimal","simple"), alpha=NULL, lambda=NULL, biasadj=FALSE, x=y, ...)
holt(y, h=10, damped=FALSE, level=c(80,95), fan=FALSE, initial=c("optimal","simple"), exponential=FALSE, alpha=NULL, beta=NULL, lambda=NULL, biasadj=FALSE, x=y, ...)
hw(y, h=2*frequency(x), seasonal=c("additive","multiplicative"), damped=FALSE, level=c(80,95), fan=FALSE, initial=c("optimal","simple"), exponential=FALSE, alpha=NULL, beta=NULL, gamma=NULL, lambda=NULL, biasadj=FALSE, x=y, ...)hw model. "additive" or "multiplicative"optimal, the initial values are optimized along with the smoothing parameters using ets. If simple, the initial values are set to values obtained using simple calculations on the first few observations. See Hyndman & Athanasopoulos (2014) for details.NULL, it will be estimated.NULL, it will be estimated.NULL, it will be estimated.lambda=TRUE, additive.only is set to FALSE.forecast.ets.forecast".The function summary is used to obtain and print a summary of the
results, while the function plot produces a plot of the forecasts and prediction intervals.The generic accessor functions fitted.values and residuals extract useful features of
the value returned by ets and associated functions.An object of class "forecast" is a list containing at least the following elements:
is a list containing at least the following elements:forecast(ets(...)).
Hyndman, R.J., Athanasopoulos (2014) Forecasting: principles and practice, OTexts: Melbourne, Australia. http://www.otexts.org/fpp.
ets, HoltWinters, rwf, arima.fcast <- holt(airmiles)
plot(fcast)
deaths.fcast <- hw(USAccDeaths,h=48)
plot(deaths.fcast)
Run the code above in your browser using DataLab