Produces a ggplot object of their equivalent Acf, Pacf, Ccf, taperedacf and taperedpacf functions.
# S3 method for acf
autoplot(object, ci = 0.95, ...)ggAcf(
x,
lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...
)
ggPacf(
x,
lag.max = NULL,
plot = TRUE,
na.action = na.contiguous,
demean = TRUE,
...
)
ggCcf(
x,
y,
lag.max = NULL,
type = c("correlation", "covariance"),
plot = TRUE,
na.action = na.contiguous,
...
)
# S3 method for mpacf
autoplot(object, ...)
ggtaperedacf(
x,
lag.max = NULL,
type = c("correlation", "partial"),
plot = TRUE,
calc.ci = TRUE,
level = 95,
nsim = 100,
...
)
ggtaperedpacf(x, ...)
A ggplot object.
Object of class “acf
”.
coverage probability for confidence interval. Plotting of the confidence interval is suppressed if ci is zero or negative.
Other plotting parameters to affect the plot.
a univariate or multivariate (not Ccf) numeric time series object or a numeric vector or matrix.
maximum lag at which to calculate the acf.
character string giving the type of acf to be computed. Allowed
values are "correlation
" (the default), “covariance
” or
“partial
”.
logical. If TRUE
(the default) the resulting ACF, PACF or
CCF is plotted.
function to handle missing values. Default is
na.contiguous
. Useful alternatives are
na.pass
and na.interp
.
Should covariances be about the sample means?
a univariate numeric time series object or a numeric vector.
If TRUE
, confidence intervals for the ACF/PACF
estimates are calculated.
Percentage level used for the confidence intervals.
The number of bootstrap samples used in estimating the confidence intervals.
Mitchell O'Hara-Wild
If autoplot
is given an acf
or mpacf
object, then an
appropriate ggplot object will be created.
ggtaperedpacf
library(ggplot2)
ggAcf(wineind)
wineind %>% Acf(plot=FALSE) %>% autoplot
if (FALSE) {
wineind %>% taperedacf(plot=FALSE) %>% autoplot
ggtaperedacf(wineind)
ggtaperedpacf(wineind)}
ggCcf(mdeaths, fdeaths)
Run the code above in your browser using DataLab