powered by
Calculate the False Positive Rate (FPR) for each feature using it's selection frequency
fpr_fs(x)
a randomForest or ranger object
randomForest
ranger
a tibble of selection frequencies and their false positive rate
tibble
# NOT RUN { library(randomForest) data(iris) iris.rf <- randomForest(iris[,-5], iris[,5], forest = TRUE) iris.features <- fpr_fs(iris.rf) print(iris.features) # }
Run the code above in your browser using DataLab