Learn R Programming

forward (version 1.0.3)

plot.fwdlm: Forward Search in Linear Regression

Description

This function plots the results of a forward search analysis in linear regression models.

Usage

"plot"(x, which.plots = 1:10, squared = FALSE, scaled = TRUE, ylim = NULL, xlim = NULL, th.Res = 2, th.Lev = 0.25, sig.Tst = 2.58, labels.in.plot = TRUE, ...)

Arguments

x
a "fwdlm" object.
which.plots
select which plots to draw, by default all. Each graph is addressed by an integer:
  1. leverages
  2. maximum studentized residuals
  3. minimum deletion residuals
  4. coefficients
  5. statistics
  6. forward Cook's distances
  7. modified forward Cook's distances
  8. $S^2$ values
  9. $R^2$ values

squared
logical, if TRUE plots squared residuals.
scaled
logical, if TRUE plots scaled coefficient estimates.
ylim
a two component vector for the min and max of the y axis.
xlim
a two component vector for the min and max of the x axis.
th.Res
numerical, a threshold for labelling the residuals.
th.Lev
numerical, a threshold for labelling the leverages.
sig.Tst
numerical, a value (on the scale of the t statistics) used to draw the confidence interval on the plot of the t statistics.
labels.in.plot
logical, if TRUE units are labelled in the plots when required.
...
further arguments passed to or from other methods.

References

Atkinson, A.C. and Riani, M. (2000), Robust Diagnostic Regression Analysis, First Edition. New York: Springer, Chapters 2-3.

See Also

fwdlm, fwdsco, fwdglm.

Examples

Run this code
## Not run: data(forbes)
## Not run: plot(forbes)
## Not run: mod <- fwdlm(Log.Pressure ~ Boiling.point, data=forbes)
## Not run: summary(mod)
## Not run: plot(mod)

Run the code above in your browser using DataLab