awcoord(xd, clvecd, clnum=1, mahal="square", method="classical",
clweight=switch(method,classical=FALSE,TRUE),
alpha=0.99, subsample=0, countmode=1000, ...)
nrow(xd)
.alpha
-quantile of the
corresponding chi squared distribution
over the roots of their Mahalanobis distance to the
homogeneous class, unless
this i
FALSE
, only the points of the
heterogeneous class are weighted. This, together with
method="classical"
, computes AWC as defined in Hennig (2003). If
TRUE
, all points are weighted. This, togethsubsample
of the points is used.countmode
algorithm runs awcoord
shows a message.x
can be projected onto the projection basis vectors
by x %*% units
xd
onto units
.tdecomp
, which can be expected to give
reasonable results for singular within-class covariance matrices.plotcluster
for straight forward discriminant plots.
discrproj
for alternatives.
rFace
for generation of the example data used below.set.seed(4634)
face <- rFace(600,dMoNo=2,dNoEy=0)
grface <- as.integer(attr(face,"grouping"))
awcf <- awcoord(face,grface==1)
# awcf2 <- ancoord(face,grface==1, method="mcd")
plot(awcf$proj,col=1+(grface==1))
# plot(awcf2$proj,col=1+(grface==1))
# ...done in one step by function plotcluster.
Run the code above in your browser using DataLab