awcoord(xd, clvecd, clnum=1, mahal="square", method="classical",
clweight=switch(method,classical=FALSE,TRUE),
alpha=0.99, subsample=0, countmode=1000, ...)nrow(xd).alpha-quantile of the
corresponding chi squared distribution
over the roots of their Mahalanobis distance to the
homogeneous class, unless
this iFALSE, only the points of the
heterogeneous class are weighted. This, together with
method="classical", computes AWC as defined in Hennig (2003). If
TRUE, all points are weighted. This, togethsubsample of the points is used.countmode
algorithm runs awcoord shows a message.x can be projected onto the projection basis vectors
by x %*% unitsxd onto units.tdecomp, which can be expected to give
reasonable results for singular within-class covariance matrices.plotcluster for straight forward discriminant plots.
discrproj for alternatives.
rFace for generation of the example data used below.set.seed(4634)
face <- rFace(600,dMoNo=2,dNoEy=0)
grface <- as.integer(attr(face,"grouping"))
awcf <- awcoord(face,grface==1)
# awcf2 <- ancoord(face,grface==1, method="mcd")
plot(awcf$proj,col=1+(grface==1))
# plot(awcf2$proj,col=1+(grface==1))
# ...done in one step by function plotcluster.Run the code above in your browser using DataLab