
Last chance! 50% off unlimited learning
Sale ends in
Approximates average silhouette width or the Pearson version of Hubert's gamma criterion by hacking the dataset into pieces and averaging the subset-wise values, see Hennig and Liao (2013).
distcritmulti(x,clustering,part=NULL,ns=10,criterion="asw",
fun="dist",metric="euclidean",
count=FALSE,seed=NULL,...)
cases times variables data matrix.
vector of integers indicating the clustering.
vector of integer subset sizes; sum should be smaller or
equal to the number of cases of x
. If NULL
, subset sizes are
chosen approximately equal.
integer. Number of subsets, only used if part==NULL
.
"asw"
or "pearsongamma"
, specifies
whether the average silhouette width or the Pearson version of
Hubert's gamma is computed.
"dist"
or "daisy"
, specifies
which function is used for computing dissimilarities.
logical. if TRUE
, the subset number just processed
is printed.
integer, random seed. (If NULL
, result depends on
random numbers.)
A list with components crit.overall,crit.sub,crit.sd,part
.
value of criterion.
vector of subset-wise criterion values.
standard deviation of crit.sub
, can be used to
assess stability.
list of case indexes in subsets.
Halkidi, M., Batistakis, Y., Vazirgiannis, M. (2001) On Clustering Validation Techniques, Journal of Intelligent Information Systems, 17, 107-145.
Hennig, C. and Liao, T. (2013) How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification, Journal of the Royal Statistical Society, Series C Applied Statistics, 62, 309-369.
Kaufman, L. and Rousseeuw, P.J. (1990). "Finding Groups in Data: An Introduction to Cluster Analysis". Wiley, New York.
# NOT RUN {
set.seed(20000)
options(digits=3)
face <- rFace(50,dMoNo=2,dNoEy=0,p=2)
clustering <- as.integer(attr(face,"grouping"))
distcritmulti(face,clustering,ns=3,seed=100000,criterion="pearsongamma")
# }
Run the code above in your browser using DataLab