Diptest (Hartigan and Hartigan, 1985, see dip
)
for data projected in discriminant coordinate separating optimally two
class means (see discrcoord
) as suggested by Tantrum, Murua and
Stuetzle (2003).
diptest.multi(xdata,class,pvalue="uniform",M=100)
matrix. Potentially multidimensional dataset.
vector of integers giving class numbers for observations.
"uniform"
or "tantrum"
. Defines whether
the p-value is computed from a uniform null model as suggested in
Hartigan and Hartigan (1985, using dip.test
) or as
suggested in Tantrum et al. (2003, using dipp.tantrum
).
integer. Number of artificial datasets generated in order to
estimate the p-value if pvalue="tantrum"
.
The resulting p-value.
J. A. Hartigan and P. M. Hartigan (1985) The Dip Test of Unimodality, Annals of Statistics, 13, 70-84.
Tantrum, J., Murua, A. and Stuetzle, W. (2003) Assessment and Pruning of Hierarchical Model Based Clustering, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, D.C., 197-205.
# NOT RUN { require(diptest) x <- cbind(runif(100),runif(100)) partition <- 1+(x[,1]<0.5) d1 <- diptest.multi(x,partition) d2 <- diptest.multi(x,partition,pvalue="tantrum",M=10) # }