50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


fpmoutliers (version 0.1.0)

WFPOF: WFPOF algorithm

Description

Algorithm proposed by: ZHOU Xiao-Yun+, SUN Zhi-Hui, ZHANG Bai-Li, YANG Yi-Dong - A Fast Outlier Detection Algorithm for High Dimensional Categorical Data Streams. Journal of Software 18(4). April 2007.

Usage

WFPOF(data, minSupport = 0.3, mlen = 0, noCores = 1)

Arguments

data

data.frame or transactions from arules with input data

minSupport

minimum support for FPM

mlen

maximum length of frequent itemsets

noCores

number of cores for parallel computation

Value

model output (list) with all results including outlier scores

Examples

Run this code
# NOT RUN {
library("fpmoutliers")
dataFrame <- read.csv(
     system.file("extdata", "fp-outlier-customer-data.csv", package = "fpmoutliers"))
model <- WFPOF(dataFrame, minSupport = 0.001)
# }

Run the code above in your browser using DataLab