Function to run the Fpop algorithm (Maidstone et al. 2016). It uses functional pruning and optimal partionning. It optimizes the L2-loss for a penalty lambda per change.
Usage
Fpop(x, lambda, mini = min(x), maxi = max(x))
Arguments
x
a numerical vector to segment
lambda
the penalty per changepoint (see Maidstone et al. 2016)
mini
minimum mean segment value to consider in the optimisation.
maxi
maximum mean segment value to consider in the optimisation.
Value
return a list with a vector t.est containing the position of the change-points, the number of changes K and, the cost J.est.